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This practical sheet contains a single, assessed exercise on which you should write a report
with a soft word limit at 2000 words and a hard limit at 2500 words. Also note that you should
use the anonymous practicals ID (and not your real name) for the cover page of the report, and
you should name the PDF file you upload to WebLearn using that same ID (e.g., “P042.pdf”).

In this particular practical report it is fine to include snippets of code in the main body of the
report for the purpose of illustrating and discussing them.

Exercise : Model Selection for the Elastic Net

The elastic net is a penalised linear regression model that combines an L1 penalty with an L2

penalty to produce regularised estimates of the regression coefficients β. In a frequentist setting,
those estimates are computed by minimising the following penalised least squares problem:

argmin
β

{
(y −Xβ)T (y −Xβ) + λ1

p∑
i=0

|βi|+ λ2

p∑
i=0

β2
i

}
, λ1, λ2 > 0.

The λ1 and λ2 penalties are tuning parameters for which optimal values can be chosen by, say, 10-
fold cross-validation. However, the tuning should be performed over both λ1 and λ2 simultaneously
to pick the optimal model; their effects on the least squares minimisation interact and cannot be
separated, so tuning λ1 and then tuning λ2 for λ̂1 or vice versa is likely to give suboptimal results.

First, you should analyse the computational (time) complexity of solving the penalised least
squares problem for a given (λ1, λ2).

For this practical I would also like you to implement in R a simple greedy grid search (also
known as hill climbing) that performs the tuning according to the following algorithm. I suggest
you to check that your implementation works using the nki70 data set included in penalized,
with the molecular markers are explanatory variables and time as a response. Hint: it should take
at most 1 minute to run from any sensible starting point, say λ1, λ2 ∈ [5, 50].

Input: initial values (λ
(0)
1 , λ

(0)
2 ), stepping (l1, l2), tolerance ε; set λ

(0)
1 > l1 and λ

(0)
2 > l2.

Ouptut: optimal values (λ̂1, λ̂2).

1. Use 10 runs of 10-fold cross validation to evaluate (λ01, λ
(0)
2 ) in terms of average predictive

correlation (i.e. taking the average of the 10 predictive correlations computed from the 10
runs). These values will be the initial candidate solution.

2. For i = 1, . . . until convergence:

(a) Consider the models (λ
(i−1)
1 +{−l1, 0,+l1}, λ(i−1)

2 +{−l2, 0,+l2}), which are the “neigh-
bours” of the current candidate solution on a grid with stepping (l1, l2).

(b) Evaluate each of those models using 10 rounds of 10-fold cross validation and the
average predictive correlation as in step 1.
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i. If no model has predictive correlation that is greater than the predictive correlation
for the current candidate (λ

(i−1)
1 , λ

(i−1)
2 ) by at least ε, return the current candidate

as (λ̂1, λ̂2).

ii. Otherwise, select the model with the best predictive correlation as the new candi-
date (λ

(i)
1 , λ

(i)
2 ).

(c) If λ
(i)
1 < l1, set l1 = λ

(i)
1 /2.

(d) If λ
(i)
2 < l2, set l2 = λ

(i)
2 /2.

You are allowed to use the penalized package, which implements the elastic net. A good
implementation of the greedy grid search will also leverage the parallel package to speed up the
tuning; you should discuss which parts can be executed in parallel, and which cannot, and provide
an overview of various parallel implementation strategies beyond those you will implement in your
code. You should not use any function that implements parts of the search, such as those in the
caret package or any automated parameter tuning function that searches for the optimal (λ̂1, λ̂2).
(cvl() is obviously OK.)

Finally, I would like you to discuss and motivate any other choices you made to implement
the greedy grid search in R in terms of data structures (e.g. lists vs arrays, etc.) and in terms of
code organisation (e.g. factoring code into functions, etc.). Hint: a naive implementation of the
pseudocode above will compute many things over and over, and would result in much copy-and-
pasted code, both of which should be avoided.
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Solution to Exercise

A sequential implementation of the greedy grid search is as follows. It is split in three functions:

• generate.neighbours(), which implements step 2(a);

• eval.model.xval() which implements steps 1 and 2(b);

• hill.climbing() which implements the whole algorithm.

The code implements a cache that stores the average predictive correlations, using the (λ1, λ2) as
a key; parameter values that have not been evaluated yet are first introduced in the cache with a
value of NA for the average predictive correlations. Then the cache is scanned and the NAs replaced
with the estimated average predictive correlations.

library(penalized)

generate.neighbours = function(lambda, step) {

# generate a 3x3 grid with right stepping

nbrs = expand.grid(lambda1 = lambda[1] + c(-1, 0, 1) * step[1],

lambda2 = lambda[2] + c(-1, 0, 1) * step[2])

# remove the central point (it’s the current model, not a neighbour).

nbrs = nbrs[-5, ]

return(nbrs)

}#GENERATE.NEIGHBOURS

eval.model.xval = function(response, penalized, lambda) {

cv.cor = numeric(10)

for (i in seq_along(cv.cor)) {

# perform cross-validation.

pred = cvl(response, penalized = penalized, lambda1 = lambda[1],

lambda2 = lambda[2], fold = 10, model = "linear", trace = FALSE)

# compute the averaged cross-validated correlation.

cv.cor[i] = cor(response, pred$predictions[, "mu"])

}#FOR

return(mean(cv.cor))

}#EVAL.MODEL.XVAL
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hill.climbing = function(response, penalized, start, step, tol = 0.002) {

# allocate the cache.

score.cache =

data.frame(lambda1 = numeric(0), lambda2 = numeric(0), COR = numeric(0))

# fit the model for the initial lambdas.

cur.cor = eval.model.xval(response = response, penalized = penalized,

lambda = start)

# save it in the cache.

score.cache = rbind(score.cache, data.frame(lambda1 = start[1],

lambda2 = start[2], COR = cur.cor))

repeat {

cat("@ current lambdas: (", start[1], ",", start[2],

") with COR =", cur.cor, "\n")
# halve stepping if the steps are too wide.

if (any(start <= step))

step[step >= start] = start[step >= start] / 2

# generate the lambdas of the neighbouring models.

nbrs = generate.neighbours(lambda = start, step = step)

# look up in the score cache.

nbrs = merge(nbrs, score.cache, all.x = TRUE)

# fit the models not found in the score cache.

for (i in seq(nrow(nbrs))) {

# this model has already been explored, skip.

if (!is.na(nbrs[i, "COR"]))

next

nbrs[i, "COR"] =

eval.model.xval(response = response, penalized = penalized,

lambda = as.numeric(nbrs[i, c("lambda1", "lambda2")]))

}#FOR
# merge back new scores into the cache.

score.cache = merge(score.cache, nbrs, all = TRUE)

# if the best lambdas are smaller than the candidate, return.

best = nbrs[which.max(nbrs[, "COR"]), ]

if (as.numeric(best[, "COR"]) < cur.cor + tol)

break

# update the current cross-validated correlation and candidate solution.

start = as.numeric(best[, c("lambda1", "lambda2")])

cur.cor = as.numeric(best[, "COR"])

}#REPEAT

return(list(lambda = start, cor = cur.cor, models = score.cache))

}#HILL.CLIMBING

The hill.climbing() function can be shown to work as follows.
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data(nki70)

hill.climbing(response = nki70[, "time"], penalized = nki70[, 8:77],

start = c(10, 10), step = c(5, 5), tol = 0.01)

## @ current lambdas: ( 10 , 10 ) with COR = 0.274

## @ current lambdas: ( 5 , 5 ) with COR = 0.321

## @ current lambdas: ( 5 , 2.5 ) with COR = 0.344

## $lambda

## [1] 5.0 2.5

##

## $cor

## [1] 0.344

##

## $models

## lambda1 lambda2 COR

## 1 2.5 1.25 0.318

## 2 2.5 2.50 0.340

## 3 2.5 3.75 0.348

## 4 2.5 5.00 0.339

## 5 2.5 7.50 0.326

## 6 5.0 1.25 0.340

## 7 5.0 2.50 0.344

## 8 5.0 3.75 0.324

## 9 5.0 5.00 0.321

## 10 5.0 7.50 0.321

## 11 5.0 10.00 0.301

## 12 5.0 15.00 0.299

## 13 7.5 1.25 0.325

## 14 7.5 2.50 0.305

## 15 7.5 3.75 0.302

## 16 7.5 5.00 0.309

## 17 7.5 7.50 0.290

## 18 10.0 5.00 0.273

## 19 10.0 10.00 0.274

## 20 10.0 15.00 0.251

## 21 15.0 5.00 0.253

## 22 15.0 10.00 0.232

## 23 15.0 15.00 0.213

There are a number of ways to use parallel computing to speed up hill.climbing(). Clearly,
steps much be executed sequentially since each step requires the candidate values from the previous
step; but all the model evaluations within each step can be performed in parallel. The algorithm
therefore displays coarse-grained parallelism.

One simple solution is to execute cross-validation runs in parallel in eval.model.xval() as
follows. This is preferable to evaluating different (λ1, λ2) in parallel, since there are fewer than 10
in each step and therefore the maximum possible speed-up is smaller.
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library(parallel)

eval.model.xval = function(response, penalized, lambda, slaves = 2) {

FUN = function(id, response, penalized, lambda) {

library(penalized)

pred = cvl(response, penalized = penalized, lambda1 = lambda[1],

lambda2 = lambda[2], fold = 10, model = "linear", trace = FALSE)

cor(response, pred$predictions[, "mu"])

}#FUN

cl = makeCluster(slaves)

cv.cor = parSapply(cl, 1:10, FUN, response = response,

penalized = penalized, lambda = lambda)

stopCluster(cl)

return(mean(cv.cor))

}#EVAL.MODEL.XVAL

A much more scalable solution is to implement both runs and folds in parallel at the same
time; this is possible because each fold in each run is independent of any other fold in any run.
This makes it possible to use up to 10× 10 = 100 slave processes as opposed to only 10.
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eval.model.xval = function(response, penalized, lambda, slaves = 2) {

cv.cor = numeric(10)

FUN = function(fold, response, penalized, lambda) {

library(penalized)

penalized_train = penalized[-fold, ]

response_train = response[-fold]

penalized_test = penalized[fold, ]

response_test = response[fold]

model = penalized(response_train, penalized = penalized_train,

lambda1 = lambda[1], lambda2 = lambda[2], trace = FALSE)

pred = predict(model, penalized = penalized_test)

return(data.frame(PRED = pred[, "mu"], OBS = response_test))

}#FUN

folds = replicate(10, split(sample(nrow(penalized)), seq_len(10)))

cl = makeCluster(slaves)

xval = parLapply(cl, folds, FUN, response = response,

penalized = penalized, lambda = lambda)

stopCluster(cl)

for (i in 0:9)

cv.cor[i] = cor(do.call("rbind", xval[10 * i + 1:10]))[2]

return(mean(cv.cor))

}#EVAL.MODEL.XVAL

As for the time complexity of the penalized least squares optimisation problem,

argmin
β

{
(y −Xβ)T (y −Xβ) + λ1

p∑
i=0

|βi|+ λ2

p∑
i=0

β2
i

}
, λ1, λ2 > 0.

we have that

1. computing Xβ is O(np);

2. computing Z = y −Xβ is O(n);

3. computing ZTZ is O(n);

4. computing
∑

i |βi| and
∑

i β
2
i is O(p).

from the analysis of the ordinary least squares complexity in the course material. So the time
complexity of each evaluation is O(np). The overall time complexity can be taken to be that of
the LARS algorithm, O(np2), or O(p3) if we take n� p.
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