
Statistical Programming, Unassessed Practical

Marco Scutari

November 2, 2018

Exercise 1: Parallel Computing

Plant and animal breeders have effectively used phenotypic selection to increase the mean
performance in agricultural crops, trees and cattle animals. In the last decade genomic selection
has emerged as a better alternative: using the genome to predict phenotypes without having to
wait to observe them and thus improve the speed and precision of selection. The data we will use
below is a subset of a loblolly pine population described here:

http://www.genetics.org/content/190/4/1503.short

The paper explores the performance different Bayesian regression models for genomic predic-
tion; loblolly pine (pinus taeda) makes up a large proportions of the forests in North America
and is used to produce timber, so it is interesting from both an economic and environmental
perspective.

1. Load the data from the file prepd-loblolly.txt.xz (859 rows, 2000 columns) into a variable
called loblolly. Make sure all columns are stored as numeric variables.

2. We would like to fit a ridge regression model on T using all other variables as explanatory
variables. Ridge regression is a penalised linear regression model that minimises

argmin
β

{
(y −Xβ)T (y −Xβ) + λ2

p∑
i=0

β2
i

}
λ2 > 0, (1)

so that the estimator for the regression coefficients becomes

β̂ = (XTX + λ2Ip)
−1XTy. (2)

Install and load the R package penalized. Look up the documentation of the function
penalized() and use it to fit a ridge regression model with λ2 = 60. Save the model in
variable called ridge.

3. Extract the fitted values from ridge, and plot them against the corresponding observed
values of T using the lattice package; if the model fits the data well, the points should
cluster around the diagonal of the first quadrant. Add a red, dashed line on top of the
points to represent it in the plot. (Hint: use the panel option and panel.abline().) Also,
add a grey, dashed line representing the regression line of the observed values on the fitted
values.

1

4. Now extract the residuals from ridge and plot the residuals against the fitted values, adding
a horizontal, grey dashed line at zero as a reference. Also add a red dashed curve representing
the the running mean of the residuals. (Hint: use panel.loess() from the latticeExtra
package.

5. Now we will apply 10-fold cross-validation to obtain a measure of how well the data predicts
new observations. 10-fold cross-validation works as follows:

(a) Split the data into 10 subsets (called “folds”) of the same size (or as close as possible);
you can use the split() function to do that.

(b) For each fold in turn:

i. take that fold as the test set ;

ii. take the rest of the data as the training set ;

iii. use fit a ridge regression model on the training set;

iv. predict the response for the observations in the test set;

(c) Collect the pairs of (observed, predicted) values for all the observations.

(d) Compute the correlation between the (observed, predicted) pairs; this quantity is called
predictive correlation.

Implement this algorithm in a function called xval().

6. Benchmark the running time of xval().

7. Reimplement xval() using parallel computing and the parallel package. (Hint: it may be
easier to rewrite xval() to use lapply() first.) Call the new function parallel.xval().
Is this algorithm embarrassingly parallel?

8. Benchmark the running time of parallel.xval() with 2 slaves and 4 slaves, and compute
the overhead for both cases.

9. Consider the predictive correlation for 10-fold cross-validation as a function of the λ2 pa-
rameter, and write a function that builds on parallel.xval() as selects the optimal value
for λ2 as follows:

(a) start with λ2 = 2000;

(b) compute the predictive correlation for this value of lambda;

(c) repeat as long as predictive correlation increases:

i. compute λ∗2 = λ2/2;

ii. compute the predictive correlation for λ∗2;

iii. if it is larger than the predictive correlation for λ2, set λ2 = λ∗2; otherwise stop.

The function should return a numeric vector containing the optimal value of λ2 and the
corresponding predictive correlation.

10. Is using parallel.xval() the best way to implement this new function? Investigate with
snow.time() and rewrite the function as needed.

Solution to Exercise 1

2

1. loblolly =

read.table("prepd-loblolly.txt.xz", header = TRUE, colClasses = "numeric")

dim(loblolly)

[1] 859 2000

2. library(penalized)

ridge = penalized(T, penalized = ~ . - T, data = loblolly, lambda2 = 60,

trace = FALSE)

ridge

Penalized linear regression object

2000 regression coefficients

##

Loglikelihood = -1226

L2 penalty = 524 at lambda2 = 60

3. library(lattice)

xyplot(loblolly$T ~ fitted(ridge), main = "Ridge Regression",

xlab = "fitted values", ylab = "observed values",

panel = function(...) {

panel.xyplot(...)

panel.abline(0, 1, col = "darkred", lty = 2)

panel.lmline(..., col = "darkgreen", lty = 2)

})

Ridge Regression

fitted values

ob
se

rv
ed

 v
al

ue
s

−10

−5

0

5

10

15

−10 −5 0 5 10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

3

4. library(latticeExtra)

xyplot(residuals(ridge) ~ fitted(ridge), main = "Ridge Regression",

xlab = "fitted values", ylab = "residuals",

panel = function(...) {

panel.abline(h = 0, col = "grey", lty = 2)

panel.xyplot(...)

panel.loess(..., col = "darkred", lty = 2)

})

Ridge Regression

fitted values

re
si

du
al

s

−2

0

2

−10 −5 0 5 10

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

4

5. xval = function(data, k = 10, lambda2) {

n = nrow(data)

folds = split(sample(n), seq_len(k))

xval.fold = function(fold) {

dtrain = data[-fold,]

dtest = data[fold,]

ridge.fold = penalized(T, penalized = ~ . - T, data = dtrain,

lambda2 = lambda2, trace = FALSE)

pred = predict(ridge.fold, data = dtest)

return(data.frame(PRED = pred[, "mu"], OBS = dtest$T))

}#XVAL.FOLD

pairs = lapply(folds, xval.fold)

return(do.call("rbind", pairs))

}#XVAL

pairs = xval(loblolly, lambda2 = 60)

cor(pairs)

PRED OBS

PRED 1.000 0.752

OBS 0.752 1.000

6. system.time(for (i in 1:5) xval(loblolly, lambda2 = 60)) / 5

user system elapsed

49.1988 0.0344 49.2336

5

7. parallel.xval = function(data, cluster, k = 10, lambda2) {

n = nrow(data)

folds = split(sample(n), seq_len(k))

xval.fold = function(fold, lambda2) {

dtrain = data[-fold,]

dtest = data[fold,]

ridge.fold = penalized(T, penalized = ~ . - T, data = dtrain,

lambda2 = lambda2, trace = FALSE)

pred = predict(ridge.fold, data = dtest)

return(data.frame(PRED = pred[, "mu"], OBS = dtest$T))

}#XVAL.FOLD

clusterExport(cluster, list("data"))

clusterEvalQ(cluster, library(penalized))

pairs = parLapply(cluster, folds, xval.fold, lambda2 = lambda2)

return(do.call("rbind", pairs))

}#XVAL

library(parallel)

cl = makeCluster(2)

pairs = parallel.xval(loblolly, cluster = cl, lambda2 = 60)

stopCluster(cl)

cor(pairs)

PRED OBS

PRED 1.000 0.746

OBS 0.746 1.000

6

8. library(parallel)

cl = makeCluster(2)

system.time(for (i in 1:5)

parallel.xval(loblolly, cluster = cl, lambda2 = 60)) / 5

user system elapsed

0.0430 0.0104 28.5324

stopCluster(cl)

cl = makeCluster(4)

system.time(for (i in 1:5)

parallel.xval(loblolly, cluster = cl, lambda2 = 60)) / 5

user system elapsed

0.0826 0.0230 23.8828

stopCluster(cl)

The ideal running time would be the elapsed time from the sequential xval() divided by
the number of slaves, and the overhead will be the difference between the elapsed time
from parallel.xval() and the ideal time. It will vary depending on the computer you are
running the simulation on.

library(snow)

cl = snow::makeCluster(4)

plot(snow.time(

parallel.xval(loblolly, cluster = cl, lambda2 = 60)))

0 5 10 15 20 25

Elapsed Time

N
od

e

0
1

2
3

4

Cluster Usage

7

snow::stopCluster(cl)

Working with 4 slaves, two take more time than the others because there are 10 to process,
4 + 4 + 2.

9. library(parallel)

tune.ridge = function(data, cluster, k, start.lambda2) {

cur.lambda2 = start.lambda2

pairs = parallel.xval(loblolly, cluster = cluster, k = k,

lambda2 = cur.lambda2)

cur.predcor = cor(pairs$PRED, pairs$OBS)

repeat {

new.lambda2 = cur.lambda2 / 2

pairs = parallel.xval(data, cluster = cluster, k = k,

lambda2 = new.lambda2)

new.predcor = cor(pairs$PRED, pairs$OBS)

if (new.predcor >= cur.predcor) {

cur.lambda2 = new.lambda2

cur.predcor = new.predcor

}#THEN
else {

break

}#ELSE

}#REPEAT

return(c(cur.predcor = cur.predcor, cur.lambda2 = cur.lambda2))

}#TUNE.RIDGE

cl = makeCluster(4)

tune.ridge(loblolly, cluster = cl, k = 10, start.lambda2 = 2000)

cur.predcor cur.lambda2

0.788 1000.000

stopCluster(cl)

10. Using parallel.xval() is not optimal because it copies the data to the slave processes over
and over, which adds to the overhead. Still, the plot generated by snow.time() looks nice.

8

Two possible improvements are exporting the data to the slaves just once at the beginning
of tune.ridge(); and to use either 2 or 5 slaves.

library(snow)

cl = snow::makeCluster(4)

plot(snow.time(

tune.ridge(loblolly, cluster = cl, k = 10, start.lambda2 = 2000)))

0 20 40 60

Elapsed Time

N
od

e

0
1

2
3

4

Cluster Usage

snow::stopCluster(cl)

9

