
Further Statistical Methods
Contingency Tables, Hilary Term, 2015

Marco Scutari

scutari@stats.ox.ac.uk
Department of Statistics

University of Oxford

July 27, 2015

mailto:scutari@stats.ox.ac.uk


Course Information

Lectures

Week 5: Monday 11am, Thursday 11am, Friday 10am

No Practical!

Reference Books (further references in the next slide)

AA Agresti A (2013). Categorical Data Analysis. Wiley, 3rd edition.

DE Edwards D (2000). Introduction to Graphical Modelling.

Springer, 2nd edition.

SF Fienberg SE (2007). The Analysis of Cross-Classified Categorical Data.

Springer, 2nd edition.

JP Pearl J (1988). Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference. Morgan Kaufmann.

Marco Scutari University of Oxford



Other Useful Books on Contingency Tables

• Agresti A (2010). Analysis of Ordinal Categorical Data. Wiley, 2nd edition.

• Bishop YMM, Fienberg SE, Holland PW (2007). Discrete Multivariate
Analysis: Theory and Practice. Springer.

• Koller D, Friedman N (2009). Probabilistic Graphical Models. MIT ress.

• Lauritzen S (1996). Graphical Models. Oxford University Press.

• Pesarin F, Salmaso L (2010). Permutation Tests for Complex Data: Theory,
Applications and Software. Wiley.

• Whittaker J (1990). Graphical Models in Applied Multivariate Statistics.
Wiley.

Marco Scutari University of Oxford



Overview

1. Models and Probability Distributions
[AA 2, 3 & 8; DE 2]

2. Hypothesis Testing
[AA; DE 5; SF 3.8]

3. Graphical Models
[JP 3; DE 2]
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Models and Probability

Distributions
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Models and Probability Distributions

What is a Contingency Table?

A contingency table is a tabular representation of the absolute frequencies of 2
or more discrete variables, encoding their joint distribution in a set of cells
corresponding to the combinations (configurations) of their values. Each of
those discrete variables can be:

1. a categorical random variable, defined on an unordered set of values (i.e.
the level()s of the factor);

2. an ordinal random variable, defined on an ordered set of values (e.g.
small/large; 0− 10, 11− 20, > 20).

The main difference is that in the latter case the CDF is defined, as is the
concept of trend.

A natural counterpart to a contingency table is a probability table, which has
the same layout but has probabilities instead of frequencies in the cells. So, in
the case of a two-dimensional table,

{nij} in the contingency table and {πij} in the probability table.
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Models and Probability Distributions

A Two-Dimensional Contingency Table: Seat-Belts

This example from [AA 3] shows fatality results for children under 18
who were passengers in car accidents in Florida in 2008, according to
whether the child was wearing a seat belt.

Injury Outcome
Seat Belt Use Fatal Nonfatal Total

No 54 10325 10379
Yes 25 51790 51815

Total 79 62115 62194

The data is observational (it does not arise from a designed experiment)
so none of the totals are fixed.
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Models and Probability Distributions

A Two-Dimensional Contingency Table (R Code)

> # data in table form.

> belt = matrix(c(54, 25, 10325, 51790), nrow = 2,

+ dimnames = list(Seatbelt = c("No", "Yes"),

+ Injury = c("Fatal", "Nonfatal")))

> belt = as.table(belt)

> belt

Injury

Seatbelt Fatal Nonfatal

No 54 10325

Yes 25 51790

> # data in data frame form.

> as.data.frame(belt)

Seatbelt Injury Freq

1 No Fatal 54

2 Yes Fatal 25

3 No Nonfatal 10325

4 Yes Nonfatal 51790
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Models and Probability Distributions

A Three-Dimensional Contingency Table: Lizards

This small data set is from [SF] and is also used extensively in [DE].

Species Perch Diameter
Perch Height

> 4.75ft 6 4.75ft

Anolis
6 4in 32 86
> 4in 11 35

Distichus
6 4in 61 73
> 4in 41 70

For a sample of 409 lizards, the following variables were recorded:

• the species, which can be either “Sagrei” or “Distichus”;

• the height of the branch they were perched on, discretised in two
categories narrow (6 4in) and wide (> 4in);

• the diameter of that same branch, discretised in two categories
high (> 4.75ft) and low (6 4.75ft).
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Models and Probability Distributions

A Three-Dimensional Contingency Table

> lizards = read.table("lizards.txt", header = TRUE)

> head(lizards)

Species Diameter Height

1 Sagrei narrow low

2 Sagrei narrow low

3 Sagrei narrow low

4 Sagrei narrow low

5 Sagrei narrow low

> table(lizards) > table(lizards[, c("Diameter", "Height", "Species")])

, , Height = high , , Species = Distichus

Diameter Height

Species narrow wide Diameter high low

Distichus 73 70 narrow 73 61

Sagrei 86 35 wide 70 41

, , Height = low , , Species = Sagrei

Diameter Height

Species narrow wide Diameter high low

Distichus 61 41 narrow 86 32

Sagrei 32 11 wide 35 11
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Models and Probability Distributions

A Contingency Table with Ordinal Variables: Income

This small example from [DE 5] describes a survey on job satisfaction as a
function of income in the United States. The sample size can considered to be
fixed, as the number of questionnaires is fixed in advance.

Income ($)
Job Satisfaction

Very Little Moderately Very
Dissatisfied Dissatisfied Satisfied Satisfied

< 6000 20 24 80 82
6000− 15000 22 38 104 125
15000− 25000 13 28 81 113
> 25000 7 18 54 92

> job = read.table("job.satisfaction.txt", header = TRUE)

> job$Income = ordered(job$Income,

+ levels = c("< 6000", "6000-15000", "15000-25000", "> 25000"))

> job$Satisfaction = ordered(job$Satisfaction,

+ levels = c("Very Dissatisfied", "Little Dissatisfied",

+ "Moderately Satisfied", "Very Satisfied"))
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Models and Probability Distributions

Notation for Cells and Totals

Standard notation is:

• nijk with i = 1, . . . , R, j = 1, . . . , C and k = 1, . . . , L is the cell on the
ith row, jth column and kth level (of the third variable).

• Row, columns and level totals (marginals) are

ni++ =

C∑
j=1

L∑
k=1

nijk, n+j+ =

R∑
i=1

L∑
k=1

nijk, n++k =

R∑
i=1

C∑
j=1

nijk. (1)

• Totals for the sub-tables defined by one of the variables are

ni+k =

C∑
j=1

nijk, and nj+k =

R∑
i=1

nijk. (2)

• n is the sample size, i.e. the overall total of the table; in two-dimensional
tables it is also denoted as n+++.

The notation for the probabilities follows the same scheme (e.g. πi++ is the
probability associated with ni++).
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Models and Probability Distributions

margin.table(): Totals and Marginals

We can compute marginals with margin.table(), which has a margin

argument to specify which dimensions of the table to retain. For a
single variable, it produces ni++, n+j+ and n++k.

> margin.table(table(lizards), margin = 1)

Species

Sagrei Distichus

164 245

For two variables, it produces nij+, ni+k and n+jk.

> margin.table(table(lizards), margin = 2:3)

Height

Diameter high low

narrow 159 93

wide 105 52

Combining margin.table() with subsetting we can produce all
sub-tables and marginals.
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Models and Probability Distributions

expand.dft(): Expanding a Contingency Table

It is sometimes convenient to expand a contingency table into a data
frame with one row for each observation; many functions in R can
handle the latter but not the former.

> library(vcdExtra)

> lizards.df = expand.dft(table(lizards))

> head(lizards.df)

Species Diameter Height

1 Sagrei narrow high

2 Sagrei narrow high

3 Sagrei narrow high

4 Sagrei narrow high

5 Sagrei narrow high

6 Sagrei narrow high

> str(lizards.df)

’data.frame’: 409 obs. of 3 variables:

$ Species : Factor w/ 2 levels "Distichus","Sagrei": 2 2 2 2 2 2 2 2 ...

$ Diameter: Factor w/ 2 levels "narrow","wide": 1 1 1 1 1 1 1 1 ...

$ Height : Factor w/ 2 levels "high","low": 1 1 1 1 1 1 1 1 ...
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Models and Probability Distributions

Probabilistic Assumptions for Contingency Tables

The right distribution for the frequencies in a contingency tables
depends on the underlying sampling distribution.

• Poisson sampling treats the counts nijk as independent Poissons
with parameters µijk, which means that the overall total n is not
considered fixed.

• Multinomial sampling treats counts nijk as the outcomes of a
multinomial with probabilities πijk that sum up one. n is
considered fixed.

• Independent multinomial sampling one or more sets of marginal
counts are fixed, and each of the resulting sub-tables (e.g. nijk for
fixed k) has an independent multinomial distribution with
probabilities πij|k such that

∑
ij πij|k = 1. As a side effect, n is

also fixed as a result.

The most common assumption is by far multinomial sampling.
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Models and Probability Distributions

Different Sampling Schemes: Are They Related?

Poisson sampling is simply

nijk ∼ Pois(µijk) independently for all i, j, k. (3)

From probability theory then we know that

n =
∑

ijk
nijk ∼

∑
ijk
Pois(µijk) = Pois

(∑
ijk
µijk

)
(4)

so if we let πijk = µijk/
∑

ijk µijk we have

nijk | n ∼ Bi(n, πijk) and {nijk | n} ∼Mul(n, {πijk}) (5)

which is multinomial sampling. Moving to independent multinomial
sampling involves a rescaling of the probabilities to re-normalise them:

{nijk | nk} ∼Mul(nk,
{
πij|k

}
) with πij|k = πijk/

∑
ij
πijk. (6)
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Models and Probability Distributions

Roles of the Variables in a Contingency Table

Modelling a contingency table differs substantially depending on which roles we
assign to the variables, which in turn depends on the aim of the analysis.

• If there is one clear variable of interest, we can put that into a GLM and
use all the all other variables as regressors encoded as dummy variables.
The resulting GLM will then be Binomial or Multinomial depending on
how many levels the response has.

• We may interested in explaining the cell counts as a function of all the
variables, resulting in a Poisson GLM.

• We may also be interested in which variables are conditionally or
marginally dependent on each other; conditional independence tests and
graphical models are best for that.
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Models and Probability Distributions

Contingency Table as a Binomial GLM

> summary(glm(Species ~ Diameter + Height, data = lizards,

+ family = binomial))

[...]

Deviance Residuals:

Min 1Q Median 3Q Max

-1.2390 -0.9326 -0.6609 1.1170 1.8048

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1437 0.1503 0.956 0.338972

Diameterwide -0.8029 0.2198 -3.652 0.000260 ***

Heightlow -0.7511 0.2242 -3.350 0.000807 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 550.85 on 408 degrees of freedom

Residual deviance: 526.57 on 406 degrees of freedom

AIC: 532.57
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Models and Probability Distributions

Contingency Table as a Poisson GLM

> summary(glm(Freq ~ Seatbelt + Injury, data = as.data.frame(belt),

+ family = poisson))

[...]

Deviance Residuals:

1 2 3 4

8.4053 -5.7648 -0.4012 0.1794

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.57897 0.11286 22.85 <2e-16 ***

SeatbeltYes 1.60790 0.01075 149.52 <2e-16 ***

InjuryNonfatal 6.66729 0.11257 59.23 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 115243.62 on 3 degrees of freedom

Residual deviance: 104.07 on 1 degrees of freedom

AIC: 144.74
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Models and Probability Distributions

GLMs for Multinomial Responses

Multinomial GLMs are an extension of Binomial GLMs. After choosing
one level of the response as the baseline (say, yR), the model fits the
following set of simultaneous equations:

logit(Yi = yr | Yi ∈ {yr, yR}) =

= log

[
P(Yi = yr | Yi ∈ {yr, yR})

1− P(Yi = yr | Yi ∈ {yr, yR})

]
=

= β0(r) + xi1β1(r) + . . .+ xipβp(r) for r = 1, . . . , R. (7)

Only R− 1 simultaneous equations are needed, the logit values for other
pairs of levels (yr, ys) can be derived as

logit(Yi = yr | Yi ∈ {yr, ys}) =

= logit(Yi = yr | Yi ∈ {yr, yR})− logit(Yi = ys | Yi ∈ {ys, yR}) (8)

and from there the parameters of the regression models.
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Models and Probability Distributions

Contingency Tables as Multinomial GLMs

> library(nnet)

> summary(multinom(Satisfaction ~ Income, data = job))

Call:

multinom(formula = Satisfaction ~ Income, data = job)

Coefficients:

(Intercept) Income.L Income.Q Income.C

Little Dissatisfied 0.61 0.56 -0.094 0.022

Moderately Satisfied 1.70 0.50 0.023 -0.038

Very Satisfied 1.97 0.88 0.044 -0.025

Std. Errors:

(Intercept) Income.L Income.Q Income.C

Little Dissatisfied 0.17 0.37 0.34 0.31

Moderately Satisfied 0.15 0.33 0.30 0.28

Very Satisfied 0.15 0.32 0.30 0.27

Residual Deviance: 2085

AIC: 2109
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Models and Probability Distributions

From Multinomial to Ordered Responses

If the response is an ordinal random variable, then the multinomial GLM
changes cumulative logit, i.e. a logit link on the cumulative distribution
function

logit(Yi 6 yr) = log

(
P(Yi 6 yr)

1− P(Yi 6 yr)

)
=

= log

(
FYi(yr)

1− FYi(yr)

)
= β0(r) + xi1β1 + . . .+ xipβp (9)

with a different intercept for each level but the same regression
coefficients across levels. Intercepts β0(r) are constrained to be
increasing in r so that P(Yi 6 yr | X) increases in r for any fixed set of
explanatory variables X.

This is called a cumulative or proportional odds (ratio) model.
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Models and Probability Distributions

Contingency Tables as Ordinal Regressions

> library(MASS)

> summary(polr(Satisfaction ~ Income, data = job))

Re-fitting to get Hessian

Call:

polr(formula = Satisfaction ~ Income, data = job)

Coefficients:

Value Std. Error t value

Income.L 0.4163 0.136 3.052

Income.Q 0.0538 0.128 0.422

Income.C -0.0150 0.119 -0.126

Intercepts:

Value Std. Error t value

Very Dissatisfied|Little Dissatisfied -2.641 0.133 -19.881

Little Dissatisfied|Moderately Satisfied -1.490 0.087 -17.173

Moderately Satisfied|Very Satisfied 0.151 0.068 2.215

Residual Deviance: 2087.63

AIC: 2099.63
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Models and Probability Distributions

Estimating Parameters in Contingency Tables

Under the multinomial sampling assumption, estimating the parameters
of a contingency table means estimating the probabilities πijk
associated with the cells.

• The usual frequentist estimator is the relative frequency

π̂ijk =
nijk
n

(10)

which is also the maximum likelihood estimator.

• Some careful considerations are required when dealing with sparse
tables, i.e. tables with low counts and/or many zero cells.

• Bayesian posterior estimators are constructed from the Dirichlet
conjugate prior for the multinomial distribution,

Dir({αijk}) and Mul(n, {πijk})⇒ Dir({αijk + nπijk}). (11)
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Models and Probability Distributions

prop.table(): Computing Cell Probabilities

The frequentist estimator π̂ijk, the π̂ij|k, and marginal probabilities like
π̂i++ can all be computed with prop.table(). The syntax is similar to
that of margin.table(), and the two functions can be combined.

> prop.table(table(lizards)) > prop.table(table(lizards), margin = 3)

, , Height = high , , Height = high

Diameter Diameter

Species narrow wide Species narrow wide

Sagrei 0.210 0.086 Sagrei 0.326 0.133

Distichus 0.178 0.171 Distichus 0.277 0.265

, , Height = low , , Height = low

Diameter Diameter

Species narrow wide Species narrow wide

Sagrei 0.078 0.027 Sagrei 0.221 0.076

Distichus 0.149 0.100 Distichus 0.421 0.283

Marco Scutari University of Oxford



Models and Probability Distributions

Sparse Contingency Tables: Small Cell Counts

The frequentist estimator π̂ijk is problematic for sparse contingency
tables, that is, when n is not large compared to the number of cells
R× C × L because:

• a number of cell are bound to have zero counts (nijk = 0), and we
do not know whether it is impossible to observe that configuration
of the variables or it is just rare enough that we do not have it in
the sample;

• some estimated probabilities will be either π̂ijk = 0 or π̂ijk = 1,
which places them right at the boundary of their domain and thus
breaks the assumptions of most asymptotic results.

In such cases we have three options:

• applying a continuity correction to the nijk or collapsing levels;
• using a Bayesian posterior approach to move the π̂ijk away from

zero and one;
• use a shrinkage approach to do essentially the same thing but in a

non-Bayesian way.
Marco Scutari University of Oxford



Models and Probability Distributions

Continuity Corrections

In some situations the easiest solution to small nijk is to collapse levels
for one or more variables, e.g. merging adjacent age brackets. The new
cell counts are larger as a result, which improves the properties of the
contingency table because the number of cell is reduced at the same
time.

In the case of 2× 2 tables, cell counts can be corrected by adding or
subtracting 1/2 to the cell counts based on the consideration that for
large expected counts (nπijk � 0 or µijk � 0)

P(X 6 x) = P(X < x+ 1) ' P(X 6 x+ 1/2) (12)

for both the Poisson and Binomial distributions. This idea is called
Yates correction in the context of independence tests, but it has quite a
few limitations so other solutions are preferred in modern practice.
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Models and Probability Distributions

The Dirichlet-Multinomial Posterior Distribution

The Dirichlet prior for the πijk is

f({πijk}; {αijk}) =
Γ(
∑

ijk αijk)∏
ijk Γ(αijk)

∏
ijk
π
αijk−1
ijk ,

αijk > 0, πijk ∈ (0, 1),
∑

ijk
πijk = 1; (13)

and the multinomial density is

f({nijk};n, {πijk}) =
n!∏

ijk nijk!

∏
ijk
π
nijk

ijk ,

πijk ∈ [0, 1], nijk ∈ N+,
∑

ijk
πijk = 1; (14)

so the Dirichlet posterior is

f({πijk}; {nπijk + αijk}) =
Γ(n+

∑
ijk αijk)∏

ijk Γ(nπijk + αijk)

∏
ijk
π
nπijk+αijk−1
ijk .

(15)
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Models and Probability Distributions

Posterior for the Independent Multinomial Sampling

In the case of independent multinomial sampling, we typically have a collection

f1({πij|1}; {αij|1}), . . . , fL({πij|L}; {αij|L}) (16)

of k = 1, . . . , L independent priors that result in L independent Dirichlet
posteriors

fk({πij|k}; {nπij|k + αij|k}) =

Γ(n++k +
∑
ijk αij|k)∏

ijk Γ(nπij|k + αij|k)

∏
ijk

π
nπijk+αijk−1
ijk , (17)

which are then combined to give the overall posterior for the contingency table:

f({πij|k}; {nπij|k + αij|k}) =

L∏
k=1

fk({πij|k}; {nπij|k + αij|k}). (18)
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Models and Probability Distributions

What is the Interpretation of the Dirichlet Conjugate?

The Dirichlet distribution can be viewed as a generalisation of the
multinomial distribution. If we take a Dir({αijk}),

f({πijk}; {αijk}) =
Γ(
∑

ijk αijk)∏
ijk Γ(αijk)

∏
ijk
π
αijk−1
ijk (19)

and we say αijk − 1 = mijk with mijk ∈ N and
∑

ijk αijk = m+RCL,
then we have

f({πijk}; {mijk}) =
Γ(
∑

ijk[mijk + 1])∏
ijk Γ(mijk + 1)

∏
ijk
π
mijk

ijk (20)

=
(m+RCL− 1)!∏

ijkmijk!

∏
ijk
π
mijk

ijk . (21)

In other words, we can think of the Dirichlet as a multinomial encoding
an imaginary sample with size

∑
ijk αijk supporting the prior.
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Models and Probability Distributions

Parameters in the Prior and the Posterior

Coherently with this interpretations, the estimated probability for each
cell in the prior is

τijk =
αijk
N

with N =
∑

ijk
αijk (22)

and the corresponding estimate in the posterior is

π̃ijk =
αijk + nπijk
n+

∑
ijk αijk

, (23)

which can be rewritten as a convex combination of the prior and the
observed cell probabilities

αijk + nπijk
n+

∑
ijk αijk

=
Nτijk + nπijk

n+N
=

N

N + n
τijk +

n

N + n
πijk. (24)
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Models and Probability Distributions

The Imaginary Sample Size

The quantity N =
∑

ijk αijk is called the imaginary sample size, and
controls the “weight” of the prior compared to the observed data:

• if N � n then the prior dominates the likelihood;

• if n� N then the likelihood dominates the prior.

We prefer the latter because when we are using a simple prior, such as
the uniform

αijk =
N

RCL
for all i, j and k (25)

the ratio N/n acts as a smoothing or regularisation parameter for the
posterior.

Note that the uniform prior is called the non-informative prior, and
indeed we know from information theory is has the highest possible
entropy. This does not mean that it is completely uninformative!
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Models and Probability Distributions

Effect of the Imaginary Sample Size

For example, with the non-informative prior, we can see how posterior
probabilities π̃ijk get closer to τijk = 1/RCL = 0.125 with RCL = 8 if
we increase N from 5 to 50.

> N = 5 > N = 50

> prop.table(table(lizards) + N/8) > prop.table(table(lizards) + N/8)

, , Height = high , , Height = high

Diameter Diameter

Species narrow wide Species narrow wide

Sagrei 0.209 0.086 Sagrei 0.201 0.090

Distichus 0.178 0.171 Distichus 0.173 0.166

, , Height = low , , Height = low

Diameter Diameter

Species narrow wide Species narrow wide

Sagrei 0.079 0.028 Sagrei 0.083 0.038

Distichus 0.149 0.101 Distichus 0.147 0.103
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Models and Probability Distributions

Shrinkage: the James-Stein Estimator

A shrinkage estimator π̃ijk is defined as the convex combination of the
observed distribution and a target distribution τijk, which in the case of
contingency tables means

π̃ijk = λτijk + (1− λ)π̂ijk, λ ∈ [0, 1] (26)

as for Bayesian posterior estimator where

λ̂ =
N

N + n
. (27)

A closed-form estimate for the shrinkage coefficient λ is

λ̂ =
1−

∑
ijk π̂

2
ijk

(n− 1)
∑
ijk(τijk − π̂ijk)2

(28)

as derived in Hausser & Strimmer (JMLR 10:1469–1484, 2009) from James &
Stein (1961) and Ledoit & Wolf (2003).
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Models and Probability Distributions

Shrinkage Estimators and Bayesian Posteriors

It is clear from the respective definitions that there is a one-to-one
correspondence between shrinkage and posterior estimators:

• the target distribution plays the role of the prior;

• and the shrinkage coefficient is determined by the sample size and
the imaginary sample size.

Both have a few properties in common:

• they provide regularised estimates for small samples;

• as n→∞ they converge to the maximum likelihood estimates, i.e.
π̃ijk → π̂ijk;

• for small n they smooth estimated probabilities and provide
non-zero estimated probabilities for cells with zero counts, i.e.
π̃ijk > 0.

The shrinkage estimator is an empirical Bayes estimator, whereas the
posterior estimator is a full Bayesian estimator.
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Models and Probability Distributions

Tables with Structure: Some Special Cases

There are specific situations in which the structure of the data is best
modelled by some special model tailored to the underlying sampling
mechanism. An example is the Bradley-Terry model for pairwise
comparisons that result in a preference for one level over the other. It is
based on symmetric logit functions for each pair (i, j),

log

(
πij
πji

)
= βi − βj , (29)

and level i “wins” over level j if βi > βj . The estimated probability for
this event is

π̂ij =
eβi

eβi + eβj
(30)

with a confidence interval based on the covariance matrix of the
maximum likelihood estimates through

VAR(β̂i − β̂j) = VAR(β̂i) + VAR(β̂j)− 2 COV(β̂i, β̂j). (31)
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Hypothesis Testing
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Hypothesis Testing

Common Hypotheses of Interest

A large part of the analysis of contingency table is testing different kinds
of hypotheses, which involve several different tests and testing
frameworks. When we have a variable of interest we can treat as a
response, we use GLMs and deviance testing to compare the relevant
nested models. Otherwise, we use different statistics to test the
following hypotheses:

• whether two variables are marginally or conditionally independent;

• whether one ordinal variable show a trend (increasing or
decreasing) as a function of a second ordinal variable;

• whether one or more categorical variables have the same
distribution for all the levels of a separate set of variables (a
homogeneity test);

• testing paired observations for a statistically significant difference
between the two measures.
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Hypothesis Testing

Parametric, Nonparametric and Semiparametric Tests

In order to determine a threshold α for the type I error, we need to
provide a null distribution; there is more than way to do that for each
test. Depending on how we do that, we classify tests as follows.

• Parametric tests: the full distribution is completely specified by the
null hypothesis. They can be:

• asymptotic tests (e.g. χ2 log-likelihood ratio tests);
• exact tests (e.g. F tests in linear models).

• Nonparametric tests: no distributional assumption is made, and an
empirical null distribution is built using either bootstrap resampling
or permutations.

• Semiparametric tests: the null distribution is specified up to one or
more parameters, which are estimated from the empirical null
distribution through bootstrap resampling or permutations.
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Pros and Cons of Different Types of Tests

• Parametric tests can be biased when assumptions are violated or sample size
is not large enough for the test statistic to converge to the asymptotic
distribution. Permutation tests are always unbiased by construction, so they
always reject the null hypothesis α× 100% of the time.

• Nonparametric tests are slower than parametric tests due to the need of
generating the permutations or the bootstrap samples and to evaluate the
test statistic on each of them.

• However, it is always possible to define a nonparametric test, even when a
closed-form null distribution is not available or unfeasible to compute.

• Semiparametric tests are a compromise that requires much less resampling
(typically 10× less for the same precision) while still being reasonably robust.

• Nonparametric tests condition on the observed data set, whereas parametric
tests are defined on the general population the sample is drawn from. This
affects the interpretation of inference results.

• If a test statistic is consistent, the behaviour of all classes of tests is the
same in the limit of the sample size.
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Marginal Independence: Pearson’s X2 Test

The basic (unconditional) form of Pearson’s X2 statistic is

X2(X,Y ) =

R∑
i=1

C∑
j=1

(nij − µ̂ij)2

µ̂ij
, where µ̂ij =

ni+n+j

n
. (32)

It tests the independence hypothesis

H0 : X ⊥⊥P Y versus H1 : X 6⊥⊥P Y (33)

and as a parametric test it is asymptotically distributed under the null as
a χ2

(R−1)(C−1). The degrees of freedom are computed as the difference
between the number of free parameters in the observed table
(R× C − 1) and the number of free parameters under the null
(R− 1 + C − 1). From the definition, the sufficient statistic under the
null are the marginal counts {ni+} and {n+j}.
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Degrees of Freedom and Sparse Contingency Tables

In sparse contingency tables, some of the nij may be zero, as well as some of
the {ni+} and {n+j}. Some nij may be zero because the underlying πij is
small compared to the sample size and that configuration of variables has not
been observed; we call this a sampling zero. On the other hand, it may be that
πij = 0 so it is impossible to observe configuration of variables; we call the cell
a structural zero and the contingency table an incomplete table.
In the general case, the adjusted degrees of freedom for the χ2 are

ν = (Te − ze)− (Tp − zp) (34)

where (from [DF 3.8]):

• Te is the total number of cells;

• Tp is the number of parameters fitted;

• ze is the number of cells with π̂ij = 0 (i.e. the sampling zeros);

• zp is the number of parameters π̂ij cannot be estimated (because either
π̂i+ = 0 or π̂+j = 0 or both, i.e. the structural zeros).
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Other Options for Pearson’s X2

It is almost impossible to correctly adjust the degrees of freedom
because empty cells are very easily counted more than once in ze and zp
if they appear in patterns (which is most of the time); and in any case
the convergence to the χ2 distribution is problematic.
Continuity correction is only available for 2× 2 tables in the form of
Yates’ correction,

X2(X,Y ) =

R∑
i=1

C∑
j=1

(|nij − µ̂ij | − 1/2)2

µ̂ij
. (35)

This leaves:

• shrinkage tests, in which π̃ij 6= 0 by construction (but are otherwise
identical to the asymptotic χ2 test);

• permutation tests, which does not use the χ2 distribution;

• semiparametric tests, in which the degrees of freedom are
computed from the data.
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Pearson X2 as a Permutation Test

Under H0 the sufficient statistics for the multinomial model are the
marginal counts {ni+} and {n+j} for X and Y , because their joint
distribution is the product of the marginals of T = (X,Y ). Thus,
permutations of the data that result in the same {ni+} and {n+j} result
in contingency tables T ∗ = (X∗, Y ∗) that have

P(T ∗ | H0) =

∏
i ni+!

∏
j n+j !

n!
∏
ij µ̂ij !

= P(T | H0) (36)

because their probability depends on the data only through the sufficient
statistics (by definition). So T ∗ have a uniform probability distribution
under H0, which means we can generate T ∗ from H0 to build a
reference null distribution for the X2 test statistic.

Note that inference is then conditional on the sample, not on the
general population, because we condition on {ni+} and {n+j}.
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A Monte Carlo Implementation of Permutation X2

A practical, Monte Carlo implementation of Pearson’s X2 as a permutation
test then is as follows:

1. Compute the marginals {ni+} and {n+j} from T = (X,Y ).

2. Compute the value of Pearson’s X2 for T , i.e. X2(T ).

3. Generate a large enough number B of random contingency tables
T ∗ = (X∗, Y ∗) with fixed marginals {ni+} and {n+j} by permuting the
data.

4. Estimate the empirical distribution of Pearson’s X2 under H0 as
{X2(T ∗1 ), . . . ,X2(T ∗B)}.

5. Compute the p-value for the test statistic as

P(X2(T ∗) > X2(T )) =
1

B

B∑
b=1

1l(X2(T ∗b ) > X2(T )) (37)

using the right tail of the empirical distribution under H0.
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chisq.test(): Asymptotic and Permutation X2

• Asymptotic χ2 test, without Yates’ correction.

> chisq.test(belt, correct = FALSE)

Pearson’s Chi-squared test

X-squared = 151.8729, df = 1, p-value < 2.2e-16

• Asymptotic χ2 test, with Yates’ correction.

> chisq.test(belt, correct = TRUE)

Pearson’s Chi-squared test with Yates’ continuity correction

X-squared = 148.1748, df = 1, p-value < 2.2e-16

• Monte Carlo permutation test, with B = 5000 permutations.

> chisq.test(belt, simulate.p.value = TRUE, B = 5000)

Pearson’s Chi-squared test with simulated p-value (based on 5000

replicates)

X-squared = 151.8729, df = NA, p-value = 2e-04
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Packages for Hypothesis Testing: coin and bnlearn

Two other packages that implement permutation tests are bnlearn and coin;
bnlearn implements all of parametric, semiparametric and nonparametric
tests, coin just nonparametric tests. Both packages provide both marginal and
conditional tests.

> library(vcdExtra)

> belt.df = expand.dft(belt)

> library(bnlearn)

> ci.test("Seatbelt", "Injury", data = belt.df, test = "x2")

Pearson’s X^2

data: Seatbelt ~ Injury

x2 = 151.8729, df = 1, p-value < 2.2e-16

alternative hypothesis: true value is greater than 0

> ci.test("Seatbelt", "Injury", data = belt.df, test = "mc-x2")

Pearson’s X^2 (MC)

data: Seatbelt ~ Injury

mc-x2 = 151.8729, Monte Carlo samples = 5000, p-value < 2.2e-16

alternative hypothesis: true value is greater than 0
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From Marginal to Conditional Independence Tests

In contingency tables with more than two dimensions, we may also want to test
the more general hypothesis of conditional independence:

H0 : X ⊥⊥P Y | Z versus H1 : X 6⊥⊥P Y | Z (38)

where Z is a set of variables that does not include either X or Y . If Z = {∅},
we are back testing marginal independence.

Conditional independence tests, when all conditioning variables are discrete, are
constructed from marginal tests by conditioning on all the configurations of the
variables in Z:

P(X,Y | Z) =
∑

z
P(X,Y | Z = z) (39)

This works due to the law of total probability, and reduces a conditional test to
a collection of marginal tests defined on the two-dimensional contingency
tables corresponding to the z. This also means that in practice all conditional
tests are effectively in 3 dimensions, because all the variables in Z are collapsed
in a single discrete variable whose levels are the configurations z.
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Null Distribution of Conditional Independence Tests

The null distribution for a conditional (parametric or semiparametric)
test also stems from the law of total probability. The configurations z of
Z define a partition of the probability space, so

(X,Y | Z = zi) ⊥⊥P (X,Y | Z = zj) for i 6= j. (40)

For each configuration, we know that the marginal test for the
corresponding sub-table has (say) a χ2

(R−1)(C−1) assuming we do not
have problems with zero cell counts. Then, the distribution of the
conditional test is the sum of the i.i.d distributions of the marginal tests.
If there are L configurations of Z, then∑

z
χ2
(R−1)(C−1) ∼ χ

2
(R−1)(C−1)L. (41)
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Conditional Pearson’s X2 Test

The conditional version of Pearson’s X2 test therefore is

X2(X,Y | Z) =

L∑
k=1

X2(X,Y | Z = zk) =

=

L∑
k=1

 R∑
i=1

C∑
j=1

(nijk − µ̂ijk)2

µ̂ijk

 , where µ̂ijk =
ni+kn+jk
n++k

. (42)

and under the null has the asymptotic distribution

X2(X,Y | Z) ∼ χ2
(R−1)(C−1)L. (43)

Note that once we condition on Z, its value is assumed to be known;
hence it is irrelevant whether the variables in Z are categorical or ordinal.
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Conditional Pearson’s X2 in bnlearn

The syntax is the same as before, but in addition to "Diameter" (x
argument) and "Height" (y argument) we also specify the conditioning
variable(s) "Species" (z argument).

> ci.test("Diameter", "Height", "Species", data = lizards, test = "x2")

Pearson’s X^2

data: Diameter ~ Height | Species

x2 = 2.0256, df = 2, p-value = 0.3632

alternative hypothesis: true value is greater than 0

As an alternative, we can perform the corresponding permutation test.

> ci.test("Diameter", "Height", "Species", data = lizards, test = "mc-x2")

Pearson’s X^2 (MC)

data: Diameter ~ Height | Species

mc-x2 = 2.0174, Monte Carlo samples = 5000, p-value = 0.3722

alternative hypothesis: true value is greater than 0
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How Are Permutations Done in Conditional Tests?

In the presence of a set of conditioning variables Z, the conditional test
is constructed as a collection of marginal tests. As a result, the
sufficient statistics under the null hypothesis are the sufficient statistics
for each of the sub-tables the marginal test statistics are computed on.

Therefore to permute the data and obtain the empirical null
distribution:

1. We fix the marginal counts {ni+k} and {n+jk} (and thus the n++k

subtotal) for all the L configurations.

2. For each configuration in turn, we permute the corresponding
sub-table to get T ∗b(k), b = 1, . . . , B and k = 1, . . . , L;

3. We construct the overall permuted table as T ∗b = {T ∗b(k)}.

4. We compute X2(T ∗b ) a large number B of times to obtain the
empirical null distribution.
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The G2 Test

Another independence test is the G2 test, which a log-likelihood ratio test (in
statistics) and a mutual information test (in computer science and information
theory). The marginal test is

G2(X,Y ) = −2n

R∑
i=1

C∑
j=1

nij
n

log
ni+n+j

nijn
= −2n

R∑
i=1

C∑
j=1

πij log
πi+π+j

πij
(44)

with distribution χ2
(R−1)(C−1); and the conditional test is

G2(X,Y | Z) = −2n

L∑
k=1

 R∑
i=1

C∑
j=1

nijk
n

log
nijkn++k

ni+kn+jk

 (45)

with distribution χ2
(R−1)(C−1)L. Note that as n→∞, |X2−G2 | → 0 in

probability. X2 converges to the asymptotic χ2 distribution more quickly.

The nonparametric G2 test is computed in the same way as for the X2 test.
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The Relationship Between the X2 and G2 Tests

X2 and G2 can approximate each other using the fact that

log x 6 x− 1, x > 0

so we can bound the logarithm as follows:

a− b
a

6 log
(a
b

)
6
a− b
b

.

where the equality hold if and only if a = b. Under the null this is the case for
G2 so we can approximate the logarithm with the mean of its bounds:

log
(a
b

)
' 1

2

(
a− b
a

+
a− b
b

)
=
a2 − b2

2ab

which means that

G2(X,Y ) ∝ −
R∑
i=1

L∑
j=1

πij log
πiπj
πij
' −

R∑
i=1

L∑
j=1

πij
π2
ij − (πiπj)

2

2πijπiπj

'
R∑
i=1

L∑
j=1

(πij − πiπj)2

πiπj
= X2(X,Y ).
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A Compromise: Semiparametric Tests

The semiparametric versions of G2 and Pearson’s X2 uses the
asymptotic χ2

(R−1)(C−1)L distribution but estimates the degrees of
freedom from the data as

df =
1

B

B∑
b=1

X2(T ∗b ) or df =
1

B

B∑
b=1

G2(T ∗b ) (46)

because the degrees of freedom are the expectation of the χ2

distribution and therefore can be approximated by the mean of the test
statistics obtained from the permutations.

This is a much easier estimation problem than that of a nonparametric
test, because we are computing a point estimate of the mean instead of
an empirical estimate of the whole distribution. Fewer permutations are
required, and the degrees of freedom are self-adjusting in the presence
of zero cell counts.
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All G2 Tests
> ci.test("Diameter", "Height", "Species", data = lizards, test = "mi")

Mutual Information (disc.)

data: Diameter ~ Height | Species

mi = 2.0256, df = 2, p-value = 0.3632

alternative hypothesis: true value is greater than 0

> ci.test("Diameter", "Height", "Species", data = lizards, test = "sp-mi")

Mutual Information (disc., semipar.)

data: Diameter ~ Height | Species

sp-mi = 2.0256, df = 1.974, Monte Carlo samples = 100, p-value = 0.3576

alternative hypothesis: true value is greater than 0

> ci.test("Diameter", "Height", "Species", data = lizards, test = "mc-mi")

Mutual Information (disc., MC)

data: Diameter ~ Height | Species

mc-mi = 2.0256, Monte Carlo samples = 5000, p-value = 0.3666

alternative hypothesis: true value is greater than 0
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Fisher’s (Exact) Test (Marginal Only)

Fisher’s exact test is the probability of getting a particular T under H0, that is,
the P(T | H0) we used in (36) in defining the permutation tests:

P(T ) =

∏
i ni+!

∏
j n+j !

n!
∏
ij nij !

(47)

which is an extension of the hypergeometric distribution. So the p-value of the
test is the proportion of contingency tables T ∗ such that P(T ) < P(T ∗).

This test would be the best possible test except:

• it is not computationally feasible to use it on tables with very large R or
C because there are too many possible tables to enumerate;

• as a conditional test, it is not computationally feasible even for moderate
R and C because L increases very quickly with the number of
conditioning variables.

In practice it is most often computed as a permutation test or using its
asymptotic distribution χ2

(R−1)(C−1)L.
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Fisher’s test: fisher.test()

> fisher.test(belt)

Fisher’s Exact Test for Count Data

data: belt

p-value < 2.2e-16

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

6.623513 18.173941

sample estimates:

odds ratio

10.83069

> fisher.test(job)

Error in fisher.test(job) : FEXACT error 501. [...] The algorithm cannot

proceed. Reduce the workspace size or use another algorithm.

> fisher.test(job, simulate.p.value = TRUE, B = 5000)

Fisher’s Exact Test for Count Data with simulated p-value (based

on 5000 replicates)

data: job

p-value = 0.2326

alternative hypothesis: two.sided
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Testing Ordinal Variables for Trend: Jonckheere-Terpstra

The test statistic is defined for X and Y ordinal as

JT(X,Y | Z) =

L∑
k=1

R∑
i=2

i−1∑
j=1

[
C∑
s=1

wijsknisk −
ni+k(ni+k + 1)

2

]
(48)

where the wijsk are Wilcoxon scores, defined as

wijsk =

s−1∑
t=1

[
nitk + njtk +

nisk + njsk + 1

2

]
, (49)

and has an asymptotic normal distribution with mean and variance defined in
[DE 5]. The null hypothesis is that of homogeneity; if we denote with
Fi,k(y) = P(Y < y | X = i,Z = k), then

H0 : F1,k(y) = F2,k(y) = . . . = FT,k(y) for ∀y and ∀k. (50)

The alternative hypothesis H1 = H1,1 ∪H1,2 is that of stochastic ordering,
either increasing or decreasing:

H1,1 : Fi,k(y) > Fj,k(y) with i < j for ∀y and ∀k (51)

H1,2 : Fi,k(y) 6 Fj,k(y) with i < j for ∀y and ∀k. (52)
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ci.test() and Jonckheere-Terpstra

ci.test() in bnlearn provides an implementation of this test, the other
being in the ciTest ordinal() in the gRim package.

> ci.test(job, test = "jt")

Jonckheere-Terpstra

data: Income ~ Satisfaction

jt = 3.053, p-value = 0.002266

alternative hypothesis: true value is not equal to 0

Remember that conditioning variables can be either ordinal or categorical (or a
mixture of the two): the construction of the conditional test is exactly the
same, as well as the null and the alternative distribution.

The test is two-tailed, with the left tail corresponding to a decreasing trend
and the right tail corresponding to an increasing trend.

Marco Scutari University of Oxford



Hypothesis Testing

McNemar’s Test for Paired Variables

McNemar’s test is a statistical test used on paired categorical data (for
paired ordinal data, different tests for rank agreement are used) in which
each variables has 2 levels. The null hypothesis is marginal homogeneity,
that is, that the marginal distributions of X and Y are the same:

H0 : π1+ = π+1 versus H1 : π1+ 6= π+1. (53)

This is the same as testing the off-diagonal elements, because

π1+ − π+1 = π11 + π12 − π11 − π21 = π12 − π21. (54)

which means that we accept the null hypothesis when there is a low
number of discordant cells (i.e. cells not on the diagonal of the table).
The test statistic is

MN(X,Y ) =
(n12 − n21)2

n12 + n21
∼ χ2

1. (55)
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mcnemar.test() and mh test()

> mcnemar.test(belt, correct = TRUE)

McNemar’s Chi-squared test with continuity correction

data: belt

McNemar’s chi-squared = 10248.25, df = 1, p-value < 2.2e-16

> mcnemar.test(belt, correct = FALSE)

McNemar’s Chi-squared test

data: belt

McNemar’s chi-squared = 10250.24, df = 1, p-value < 2.2e-16

coin has an implementation of McNemar’s test as a permutation test in
the mh test() function, which can also perform conditional tests.
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Graphical Models

Graphical Models

Graphical models are defined by:

• a network structure, G = (V, E), either an undirected graph
(Markov networks, gene association networks, correlation networks,
etc.) or a directed graph (Bayesian networks). Each node vi ∈ V
corresponds to a random variable Xi;

• a global probability distribution, X, which can be factorised into a
small set of local probability distributions according to the edges
eij ∈ E present in the graph.

This combination allows a compact representation of the joint
distribution of large numbers of random variables and simplifies
inference on the resulting parameter space.
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Graphical Models

A Simple Bayesian Network: Watson’s Lawn
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Graphical Models

Graphical Separation and Independence

The main role of the graph structure is to express the conditional
independence relationships among the variables in the model, thus
specifying the factorisation of the global distribution. Different classes
of graphs express these relationships with different semantics, which
have in common the principle that graphical separation of two (sets of)
nodes implies the conditional independence of the corresponding (sets
of) random variables.

For networks considered here, separation is defined as:

• (u-)separation in Markov networks;

• d-separation in Bayesian networks.
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Graphical Separation

separation (undirected graphs)

d-separation (directed acyclic graphs)
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Graphical Models

Maps and Independence

A graph G is a dependency map (or D-map) of the probabilistic dependence
structure P of X if there is a one-to-one correspondence between the random
variables in X and the nodes V of G, such that for all disjoint subsets A, B, C
of X we have

A ⊥⊥P B | C =⇒ A ⊥⊥G B | C. (56)

Similarly, G is an independency map (or I-map) of P if

A ⊥⊥P B | C⇐= A ⊥⊥G B | C. (57)

G is said to be a perfect map of P if it is both a D-map and an I-map, that is

A ⊥⊥P B | C⇐⇒ A ⊥⊥G B | C, (58)

and in this case P is said to be isomorphic to G.

Graphical models are formally defined as I-maps under the respective
definitions of graphical separation, but sometimes we assume they are perfect
maps for particular algorithms in model estimation and inference.
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Factorisation into Local Distributions

The most important consequence of defining graphical models as I-maps
is the factorisation of the global distribution into local distributions:

• in Markov networks, local distributions are associated with the
cliques Ci (maximal subsets of nodes in which each element is
adjacent to all the others) in the graph,

P(X) =

k∏
i=1

ψi(Ci), (59)

and the ψk functions are called potentials.

• in Bayesian networks, each local distribution is associated with a
single node Xi and depends only on the joint distribution of its
parents ΠXi :

P(X) =

p∏
i=1

P(Xi | ΠXi). (60)
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A Note About Potentials

Potentials are non-negative functions representing the relative mass of
probability of each clique Ci. They are proper probability or density
functions only when the graph is decomposable or triangulated, that is
when it contains no induced cycles other than triangles. With any other
type of graph inference becomes very hard, if possible at all, because
ψ1, ψ2, . . . , ψk have no direct statistical interpretation.

In this case the global distribution factorises again according to the
chain rule and can be written as

P(X) =

∏k
i=1 P(Ci)∏k
i=1 P(Si)

(61)

where Si are the nodes of Ci which are also part of any other clique up
to Ci−1.
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Neighbourhoods and Markov Blankets

Furthermore, for each node Xi two sets are defined:

• the neighbourhood, the set of nodes that are adjacent to Xi.
These nodes cannot be made independent from Xi.

• the Markov blanket, the set of nodes that completely separates Xi

from the rest of the graph. Generally speaking, it is the set of
nodes that includes all the knowledge needed to do inference on
Xi, from estimation to hypothesis testing to prediction, because all
the other nodes are conditionally independent from Xi given its
Markov blanket.

These sets are related in Markov and Bayesian networks; in particular,
Markov blankets can be shown to be the same using a moral graph.
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Neighbourhoods and Markov Blankets
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Graphical Models

Markov networks vs Bayesian networks

Markov networks and Bayesian networks do not appear to be closely
related, as they are so different in construction and interpretation.

• There are indeed dependency models that have an undirected
perfect map but not a directed acyclic one, and vice versa.

• However, it can be shown that every dependency structure that can
be expressed by a decomposable graph can be modelled both by a
Markov network and a Bayesian network.

• It can also be shown that every dependency model expressible by
an undirected graph is also expressible by a directed acyclic graph,
with the addition of some auxiliary nodes.

These two results indicate that there is a significant overlap between
Markov and Bayesian networks, and that in many cases both can be
used to the same effect.
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Probability Distributions: Discrete and Continuous

Data used in graphical modelling should respect the following
assumptions:

• if all the variables Xi are discrete, both the global and the local
distributions are assumed to be multinomial. Local distributions are
described using conditional probability tables;

• if all the variables Xi are continuous, the global distribution is
assumed to be a multivariate Gaussian distribution, and the local
distributions are univariate or multivariate Gaussian distributions.
Local distributions are described using partial correlation
coefficients;

• if both continuous and discrete variables are present, we can
assume a mixture or conditional Gaussian distribution, discretise
continuous attributes or use a nonparametric approach.
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Graphical Models

Other Distributional Assumptions

Other fundamental distributional assumptions are:

• observations must be independent. If some form of temporal or
spatial dependence is present, it must be specifically accounted for
in the definition of the network (as in dynamic Bayesian networks);

• if the model will be used as a causal graphical model, that is, to
infer cause-effect relationship from experimental or (more
frequently) observational data, there must be no latent or hidden
variables that influence the dependence structure of the model;

• all the relationships between the variables in the network must be
conditional independencies, because they are by definition the only
ones that can be expressed by graphical models.
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Graphical Models

A Gaussian Markov Network (MARKS)
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Graphical Models

A Discrete Bayesian Network (ASIA)

visit to Asia? smoking?

tuberculosis? lung cancer? bronchitis?

either tuberculosis
or lung cancer?

positive X-ray?
dyspnoea?
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Graphical Models

A Discrete Bayesian Network (ASIA)

visit to Asia?
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smoking?

lung cancer?
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or lung cancer?

either tuberculosis
or lung cancer?
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dyspnoea?

visit to Asia? smoking?
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Graphical Models

Learning a Graphical Model

Model selection and estimation are collectively known as learning, and are
usually performed as a two-step process:

1. structure learning, learning the graph structure from the data.

2. parameter learning, learning the local distributions implied by the graph
structure learned in the previous step.

This work-flow is implicitly Bayesian; given a data set D and if we denote the
parameters of the global distribution as X with Θ, we have

P(M | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

(62)

and structure learning is done in practise as

P(G | D) ∝ P(G) P(D | G) = P(G)

∫
P(D | G,Θ) P(Θ | G)dΘ. (63)
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Graphical Models

Local Distributions: Divide and Conquer

Most tasks related to both learning and inference are NP-hard (they cannot be
solved in polynomial time in the number of variables). They are still feasible
thanks to the decomposition of X into the local distributions; under some
assumptions (parameter independence) there is never the need to manipulate
more than one of them at a time.

In Bayesian networks, for example, structure learning boils down to

P(D | G) =

∫ ∏
[P(Xi | ΠXi ,ΘXi) P(ΘXi | ΠXi)] dΘ (64)

=
∏[∫

P(Xi | ΠXi ,ΘXi) P(ΘXi | ΠXi)dΘXi

]
(65)

and parameter learning boils down to

P(Θ | G,D) =
∏

P(ΘXi | ΠXi ,D). (66)
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Graphical Models

Constraint-, Score-based and Hybrid Structure Learning

Despite the (sometimes confusing) variety of theoretical backgrounds and
terminology they can all be traced to only three approaches:

• constraint-based algorithms: they use statistical tests to learn conditional
independence relationships (called constraints in this setting) from the
data and assume that the graph underlying the probability distribution is
a perfect map to determine the correct network structure.

• score-based algorithms: each candidate network is assigned a score
reflecting its goodness of fit, which is then taken as an objective function
to maximise.

• hybrid algorithms: conditional independence tests are used to learn at
least part of the conditional independence relationships from the data,
thus restricting the search space for a subsequent score-based search. The
latter determines which edges are actually present in the graph and, in the
case of Bayesian networks, their direction.
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Graphical Models

Structure Learning, Contingency Tables and GLMs

The lack of arc between two variables X and Y in a graphical model implies
they are independent given other variables Z. Any such statement can be
rephrased as:

• A nested GLM model testing in which Y is the response and

H0 : βX = 0 versus H1 : βX 6= 0. (67)

If H0 is rejected we assume the graph is a perfect map and we include an
arc between X and Y ; or we remove it instead if we accept H0. Or we
can use AIC/BIC to see which model fits the data best.

• A conditional independence test non explicitly associated with a
regression model, such as Pearson’s X2.

The difference between the two interpretations is often blurred (e.g. model
selection of any kind is equivalent to testing partial correlations, Pearson’s X2

is the sum of Pearson’s residuals in a Poisson GLM model, etc.).
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Graphical Models

Log-Linear GLMs Represented as Markov Networks

The equivalence between GLMs and graphical models goes beyond 2nd-order
interactions (which are represented by a single arc): higher interactions terms
are expressed by groups of arcs, and thus by groups of interaction terms. If we
assume Poisson sampling and we build the corresponding log-linear model, say

log(πijk) = µ+ uAi + uBj + uCk + uABij + uACik (68)

in which the u terms represents the contrasts for each variable and interaction
and the respective regression coefficients. The corresponding graph is:

A B

C
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Graphical Models

Log-Linear GLMs Represented as Markov Networks

The saturated model would then be

log(πijk) = µ+ uAi + uBj + uCk + uABij + uACik + uBCjk + uABCijk (69)

which has graph:

A B

C

Removing the arc between B and C implies uBCjk = 0, and in turn we set

uABCijk = 0 to keep the hierarchical structure of the interactions. Thus
we obtain the model in the previous slide.
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Graphical Models

Bayesian Networks as Hierarchical Regressions

In Bayesian networks, each node is modelled with a univariate
distribution which is conditional on its parents. Therefore, it is natural
to use the graph to represent a hierarchical regression model.

So, for the graph on the right, we
have the following GLMs for the
nodes.

g(A) = µA + uB + uC (70)

g(B) = µB (71)

g(C) = µC + uB (72)

In this representation each node has
its own independent error term,
making the regressions independent
of each other.

A

B

C
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Graphical Models

Likelihood, Bayesian and Shrinkage Parameter Learning

Once the structure of the model is known, the problem of estimating
the parameters of the global distribution can be solved by estimating the
parameters of the local distributions, one at a time.

Three common choices are:

• maximum likelihood estimators: just the usual empirical estimators.
Often described as either maximum entropy or minimum divergence
estimators in information-theoretic literature.

• Bayesian posterior estimators: posterior estimators, based on
conjugate priors to keep computations fast, simple and in closed
form.

• shrinkage estimators: regularised estimators based either on
James-Stein or Bayesian shrinkage results, or regularised regression
models.
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Graphical Models

Inference on Graphical Models

Inference on Bayesian networks usually consists of conditional
probability (CPQ) or maximum a posteriori (MAP) queries.

Conditional probability queries are concerned with the distribution of a
subset of variables Q = {Xj1 , . . . , Xjl} given some evidence E on
another set Xi1 , . . . , Xik of variables in X:

CPQ(Q | E,M) = P(Q | E,G,Θ) = P(Xj1 , . . . , Xjl | E,G,Θ). (73)

Maximum a posteriori queries are concerned with finding the
configuration q∗ of the variables in Q that has the highest posterior
probability:

MAP (Q | E,M) = q∗ = argmax
q

P(Q = q | E,G,Θ). (74)

Both can be computed exactly in a few cases (discrete models, mostly),
but are commonly computed using importance sampling or MCMC.
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That’s It!
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