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Bayesian Networks: a Graph and a Probability Distribution

Bayesian networks (BNs) [6] are defined by:

• a network structure, a directed acyclic graph 𝒢 in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution X = {𝑋1, … , 𝑋𝑁} which can be
factorised into smaller local probability distributions according to
the arcs present in the graph 𝒢.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖}.

Local distributions can be anything, so BNs can subsumemany classical
statistical models used in clinical practice.



Discrete Bayesian Networks
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Discrete BNs subsume contingency
table analysis and (multinomial)
logistic regression: the local
distributions 𝑋𝑖 ∣ Π𝑋𝑖

are
conditional probability tables.

A classic example of discrete BN is
the ASIA network from Lauritzen &
Spiegelhalter (1988) [2], which
includes a collection of binary
variables. It describes a simple
diagnostic problem for tuberculosis
and lung cancer.



Gaussian Bayesian Networks
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Gaussian BNs subsume linear
models and analysis of variance
techniques. The local
distributions 𝑋𝑖 ∣ Π𝑋𝑖

take the
form of linear regression models
with independent error terms in
which the Π𝑋𝑖

act as regressors.

A classic example of GBN is the
MARKS networks fromMardia,
Kent & Bibby (1979) [3], which
describes the relationships
between the marks on 5
math-related topics.



Conditional Linear Gaussian Bayesian Networks
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+ 𝜀D3

Conditional Linear Gaussian BNs
contain both discrete and
continuous nodes, which are
modelled using either conditional
probability tables or mixtures of
regression models.

A classic example is the RAT
WEIGHTS network from Edwards
(1995) [1], which describes weight
loss in a drug trial performed on
rats.

More complex model setups are possible, but not often used, because
they may bemore difficult to interpret and for computational reasons.



Learning a Bayesian Network

Model selection and estimation are collectively known as learning, and
are usually performed as a two-step process:
1. Structure learning, learning the graph structure from the data.
2. Parameter learning, learning the local distributions implied by the

graph structure learned in the previous step.
This workflow is implicitly Bayesian: given a data set 𝒟 and if we denote
the parameters of the global distribution as X with Θ, we have

P(ℳ ∣ 𝒟)⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.
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Using Expert Knowledge to Construct a Bayesian Network

Learning a BN of any complexity is a data-driven exercise: usually there is
not enough information available to build it from first principles.
However, we can also incorporate information from expert knowledge
along with that provided by the data in a Bayesian workflow. For
instance:

• Using whitelists and blacklists for specific arcs or arc patterns.

• Giving prior probabilities to particular patterns of arcs to encourage
or discourage them from appearing in the BN.

• Using prior distributions on the values of specific parameters to
drive their sign or their magnitude.

PROS: we get a BN that agrees with what we know, and we reduce the
number of models we are considering.
CONS: wemust trust expert knowledge to be correct, which is not trivial
when there are multiple experts and they disagree with each other.



Using Bayesian Networks: Inference

A BN represents a working model of the world that a computer system
can understand: we can ask it questions, and the computer system
answers them algorithmically (no manual computations needed). This
known as probabilistic inference in BNs. Commonly:

• Conditional probability queries: the probability of an event of
interest given some evidence.

• Most probable explanation queries: the most probable value one or
more variables will take given some evidence.
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Using Bayesian Networks: Causal Inference

If we make some assumptions (no confounding), we can use BNs to
perform causal inference [5] in a principled way:

• it improves our understanding of the underlying phenomenon;

• it allows us to target interventions to effect some desirable change
to the underlying phenomenon;

• it allows us to reason about counterfactuals.

Protein Signalling, Sachs et al. (2005)
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Bayesian Networks and Experimental Design

The link between BNs and causal inference also involves key concepts
from experimental design [4]. Many key concepts from that field can be
found in the network structure of a BN:

• Randomisation: randomising (say) a treatment means that the
corresponding node in the BN cannot have any parents.

• Blocking (or stratification): adding one or more discrete nodes that
do not have any parents but can be parents of outcomes.

• Confounding: unobserved variables that are parents of one or more
nodes in the BN.

• Analysis of variance: explaining a statistically-significant proportion
of variance implies a strong conditional association, which is what is
used to perform structure learning.



Summary

• BNs provide an intuitive representation of the relationships linking
heterogeneous sets of variables, which we can use for qualitative and
quantitative reasoning.

• We can learn BNs from data while including prior knowledge as
needed to improve the quality of the model.

• BNs subsume a large number of probabilistic models and thus can
readily incorporate other techniques from statistics and experimental
design.

• For most tasks we can start just reusing state-of-the-art, general
purpose algorithms.

• Once learned, BNs provide a flexible tool for inference, both
probabilistic and causal.



Thanks!

Any questions?
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