
Learning Bayesian Networks in R
an Example in Systems Biology

Marco Scutari

m.scutari@ucl.ac.uk
Genetics Institute

University College London

July 9, 2013

Marco Scutari University College London

mailto:m.scutari@ucl.ac.uk

Bayesian Networks Essentials

Marco Scutari University College London

Bayesian Networks Essentials

Bayesian Networks

Bayesian networks [21, 27] are defined by:

� a network structure, a directed acyclic graph G = (V, A), in
which each node vi ∈ V corresponds to a random variable Xi;

� a global probability distribution, X, which can be factorised into
smaller local probability distributions according to the arcs
aij ∈ A present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model
through graphical separation, thus specifying the factorisation of
the global distribution:

P(X) =

p∏
i=1

P(Xi | ΠXi) where ΠXi = {parents of Xi}

Marco Scutari University College London

Bayesian Networks Essentials

A Simple Bayesian Network: Watson’s Lawn

TRUE FALSE

SPRINKLER

0.4 0.6

TRUE FALSE

RAIN

0.2 0.8

SPRINKLER
FALSE

GRASS WET

0.0 1.0

TRUE
RAIN

FALSEFALSE

0.8 0.2TRUEFALSE

0.9 0.1FALSETRUE

0.99 0.01TRUETRUE

RAIN

FALSE

0.01 0.99TRUE

SPRINKLERSPRINKLERSPRINKLER RAIN

GRASS WET

Marco Scutari University College London

Bayesian Networks Essentials

Graphical Separation

separation (undirected graphs)

d-separation (directed acyclic graphs)

C
A B

C
A B

C
A B

C
A B

Marco Scutari University College London

Bayesian Networks Essentials

Skeletons, Equivalence Classes and Markov Blankets

Some useful quantities in Bayesian network modelling:

� The skeleton: the undirected graph underlying a Bayesian network, i.e.
the graph we get if we disregard arcs’ directions.

� The equivalence class: the graph (CPDAG) in which only arcs that are
part of a v-structure (i.e. A→ C ← B) and/or might result in a
v-structure or a cycle are directed. All valid combinations of the other
arcs’ directions result in networks representing the same dependence
structure P .

� The Markov blanket of a node Xi, the set of nodes that completely
separates Xi from the rest of the graph. Generally speaking, it is the
set of nodes that includes all the knowledge needed to do inference on
Xi, from estimation to hypothesis testing to prediction: the parents of
Xi, the children of Xi, and those children’s other parents.

Marco Scutari University College London

Bayesian Networks Essentials

Skeletons, Equivalence Classes and Markov Blankets

DAG

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

Skeleton

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

CPDAG

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

Markov blanket of X9

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

Marco Scutari University College London

Bayesian Networks Essentials

Learning a Bayesian Network

Model selection and estimation are collectively known as learning, and
are usually performed as a two-step process:

1. structure learning, learning the network structure from the data;

2. parameter learning, learning the local distributions implied by the
structure learned in the previous step.

This workflow is implicitly Bayesian; given a data set D and if we denote
the parameters of the global distribution as X with Θ, we have

P(M | D) = P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

and structure learning is done in practice as

P(G | D) ∝ P(G) P(D | G) = P(G)

∫
P(D | G,Θ) P(Θ | G)dΘ.

Marco Scutari University College London

Bayesian Networks Essentials

Inference on Bayesian Networks

Inference on Bayesian networks usually consists of conditional probability
(CPQ) or maximum a posteriori (MAP) queries.

Conditional probability queries are concerned with the distribution of a
subset of variables Q = {Xj1 , . . . , Xjl} given some evidence E on
another set Xi1 , . . . , Xik of variables in X:

CPQ(Q | E,M) = P(Q | E,G,Θ) = P(Xj1 , . . . , Xjl | E,G,Θ).

Maximum a posteriori queries are concerned with finding the
configuration q∗ of the variables in Q that has the highest posterior
probability:

MAP (Q | E,M) = q∗ = argmax
q

P(Q = q | E,G,Θ).

Marco Scutari University College London

Causal Protein-Signalling

Network from Sachs et al.

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

Source

What follows reproduces (to the best of my ability, and Karen
Sachs’ recollections about the implementation details that did not
end up in the Methods section) the statistical analysis in the
following paper [29] from my book [25]:

DOI: 10.1126/science.1105809
, 523 (2005);308Science
, et al.Karen Sachs

Causal Protein-Signaling Networks Derived from
Multiparameter Single-Cell Data

That’s a landmark paper in applying Bayesian Networks because:

� it highlights the use of observational vs interventional data;

� results are validated using existing literature.

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

An Overview of the Data

The data consist in the simultaneous measurements of 11
phosphorylated proteins and phospholypids derived from thousands
of individual primary immune system cells:

� 1800 data subject only to general stimolatory cues, so that the
protein signalling paths are active;

� 600 data with with specific stimolatory/inhibitory cues for each
of the following 4 proteins: pmek, PIP2, pakts473, PKA;

� 1200 data with specific cues for PKA.

Overall, the data set contains 5400 observations with no missing
value.

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

Network Validated from Literature

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

(11 nodes, 17 arcs)

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

Plotting the Network

The plot in the previous slide requires bnlearn [25] and Rgraphviz
[14] (which is based on graph [13] and the Graphviz library).

> library(bnlearn)

> library(Rgraphviz)

> spec =

+ paste("[PKC][PKA|PKC][praf|PKC:PKA][pmek|PKC:PKA:praf]",

+ "[p44.42|pmek:PKA][pakts473|p44.42:PKA][P38|PKC:PKA]",

+ "[pjnk|PKC:PKA][plcg][PIP3|plcg][PIP2|plcg:PIP3]")

> net = model2network(spec)

> class(net)

[1] "bn"

> graphviz.plot(net, shape = "ellipse")

The spec string specifies the structure of the Bayesian network in
a format that recalls the decomposition into local probabilities; the
order of the variables is irrelevant.

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

Advanced Plotting: Highlighting Arcs and Nodes

graphviz.plot() is simpler to use (but less flexible) than the functions
in Rgraphviz; we can only choose the layout and do some limited
formatting using shape and highlight.

> h.nodes = c("praf", "pmek", "p44.42", "pakts473")

> high = list(nodes = h.nodes, arcs = arcs(subgraph(net, h.nodes)),

+ col = "darkred", fill = "orangered", lwd = 2, textCol = "white")

> gr = graphviz.plot(net, shape = "ellipse", highlight = high)

graphviz.plot() returns a graphNEL object, which can be customised
with the functions in graph and Rgraphviz.

> nodeRenderInfo(gr)$col[c("PKA", "PKC")] = "darkgreen"

> nodeRenderInfo(gr)$fill[c("PKA", "PKC")] = "limegreen"

> edgeRenderInfo(gr)$col[c("PKA~praf", "PKC~praf")] = "darkgreen"

> edgeRenderInfo(gr)$lwd[c("PKA~praf", "PKC~praf")] = 2

> renderGraph(gr)

To achieve a complete control on the layout of the network, we can
export gR to the igraph [6] package or use Rgraphviz directly.

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

Plotting Networks, with Formatting

graphviz.plot(...)

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

renderGraph(...)

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

Creating a Network Structure in bnlearn

� With the network’s string representation, using model2network() and
modelstring().

> model2network(modelstring(net))

� Creating an empty network and adding arcs one at a time.

> e = empty.graph(nodes(net))

> e = set.arc(e, from = "PKC", to = "PKA")

� Creating an empty network and adding all arcs in one batch.

> to.add = matrix(c("PKC", "PKA", "praf", "PKC"), ncol = 2,

+ byrow = TRUE, dimnames = list(NULL, c("from", "to")))

> to.add

from to

[1,] "PKC" "PKA"

[2,] "praf" "PKC"

> arcs(e) = to.add

Marco Scutari University College London

Causal Protein-Signalling Network from Sachs et al.

Creating a Network Structure in bnlearn

� Creating an empty network and adding all arcs using an adjacency
matrix.

> n.nodes = length(nodes(e))

> adj = matrix(0, nrow = n.nodes, ncol = n.nodes)

> colnames(adj) = rownames(adj) = nodes(e)

> adj["PKC", "PKA"] = 1

> adj["praf", "PKC"] = 1

> adj["praf", "PKA"] = 1

> amat(e) = adj

> bnlearn:::fcat(modelstring(e))

[P38][p44.42][pakts473][PIP2][PIP3][pjnk][plcg][pmek][praf]

[PKC|praf][PKA|PKC:praf]

� Creating one or more random networks.

> random.graph(nodes(net), num = 5, method = "melancon")

Marco Scutari University College London

Gaussian Bayesian Networks

Marco Scutari University College London

Gaussian Bayesian Networks

Using Only Observational Data

As a first, exploratory analysis, we can try to learn a network from
the data that were subject only to general stimolatory cues. Since
these cues only ensure the pathways are active, but do not tamper
with them in any way, such data are observational (as opposed to
interventional).

> sachs = read.table("sachs.data.txt", header = TRUE)

> head(sachs, n = 4)

praf pmek plcg PIP2 PIP3 p44.42 pakts473 PKA PKC P38 pjnk

1 26.4 13.2 8.82 18.3 58.80 6.61 17.0 414 17.00 44.9 40.0

2 35.9 16.5 12.30 16.8 8.13 18.60 32.5 352 3.37 16.5 61.5

3 59.4 44.1 14.60 10.2 13.00 14.90 32.5 403 11.40 31.9 19.5

4 73.0 82.8 23.10 13.5 1.29 5.83 11.8 528 13.70 28.6 23.1

Most approaches in literature cannot handle interventional data,
but work “out of the box” with observational ones.

Marco Scutari University College London

Gaussian Bayesian Networks

Gaussian Bayesian Networks

When dealing with continuous data, we often assume they follow a
multivariate normal distribution to fit a Gaussian Bayesian network
[12, 26]. The local distribution of each node is a linear model,

Xi = µ+ ΠXiβ + ε with ε ∼ N(0, σi).

which can be estimated with any frequentist or Bayesian approach.
The same holds for the network structure:

� Constraint-based algorithms [24, 31, 32] use statistical tests to
learn conditional independence relationships from the data.

� In score-based algorithms [23, 28], each candidate network is
assigned a goodness-of-fit score, which we want to maximise.

� Hybrid algorithms [11, 33] use conditional independence tests are
to restrict the search space for a subsequent score-based search.

Marco Scutari University College London

Gaussian Bayesian Networks

Structure Learning: Constraint-Based Algorithms

> library(bnlearn)

> print(iamb(sachs))

Bayesian network learned via Constraint-based methods

model:

[partially directed graph]

nodes: 11

arcs: 8

undirected arcs: 6

directed arcs: 2

average markov blanket size: 1.64

average neighbourhood size: 1.45

average branching factor: 0.18

learning algorithm: Incremental Association

conditional independence test: Pearson's Linear Correlation

alpha threshold: 0.05

tests used in the learning procedure: 259

optimized: TRUE

Marco Scutari University College London

Gaussian Bayesian Networks

Structure Learning: Score-Based Algorithms

> print(hc(sachs))

Bayesian network learned via Score-based methods

model:

[praf][PIP2][p44.42][PKC][pmek|praf][PIP3|PIP2][pakts473|p44.42]

[P38|PKC][plcg|PIP3][PKA|p44.42:pakts473][pjnk|PKC:P38]

nodes: 11

arcs: 9

undirected arcs: 0

directed arcs: 9

average markov blanket size: 1.64

average neighbourhood size: 1.64

average branching factor: 0.82

learning algorithm: Hill-Climbing

score: Bayesian Information Criterion (Gaussian)

penalization coefficient: 3.37438

tests used in the learning procedure: 145

optimized: TRUE

Marco Scutari University College London

Gaussian Bayesian Networks

Structure Learning: Hybrid Algorithms

> print(mmhc(sachs))

Bayesian network learned via Hybrid methods

model:

[praf][PIP2][p44.42][PKC][pmek|praf][PIP3|PIP2][pakts473|p44.42]

[P38|PKC][pjnk|PKC][plcg|PIP3][PKA|p44.42:pakts473]

nodes: 11

arcs: 8

[...]

learning algorithm: Max-Min Hill-Climbing

constraint-based method: Max-Min Parent Children

conditional independence test: Pearson's Linear Correlation

score-based method: Hill-Climbing

score: Bayesian Information Criterion (Gaussian)

alpha threshold: 0.05

penalization coefficient: 3.37438

tests used in the learning procedure: 106

optimized: TRUE

Marco Scutari University College London

Gaussian Bayesian Networks

Structure Learning: Additional Arguments

Since defaults are (often) not appropriate, we can tune each structure
learning algorithm in bnlearn with several optional arguments.

� Constraint-based algorithms: we can pick the test [8, 26], the alpha
threshold and the number of permutations, e.g.:

> inter.iamb(sachs, test = "smc-cor", B = 100, alpha = 0.01)

� Score-based algorithms: we can pick the score function [17, 12] and its
tuning parameters, the number of random restarts, the length of the
tabu list, the maximum number of iterations, and more, e.g.:

> hc(sachs, score = "bge", iss = 3, restart = 5, perturb = 10)

> tabu(sachs, tabu = 15, max.iter = 500)

� Hybrid algorithms: both the above, e.g.:

> rsmax2(sachs, restrict = "si.hiton.pc", maximize = "tabu",

+ test = "zf", alpha = 0.01, score = "bic-g")

Other useful arguments: debug, whitelist, blacklist.

Marco Scutari University College London

Gaussian Bayesian Networks

Parameter Learning: Fitting and Modifying

> net = hc(sachs)

> bn = bn.fit(net, sachs, method = "mle")

> bn$pmek

Parameters of node pmek (Gaussian distribution)

Conditional density: pmek | praf

Coefficients:

(Intercept) praf

-0.834129 0.520336

Standard deviation of the residuals: 16.72394

> bn$pmek = list(coef = c(0, 0.5), sd = 20)

> bn$pmek

Parameters of node pmek (Gaussian distribution)

Conditional density: pmek | praf

Coefficients:

(Intercept) praf

0.0 0.5

Standard deviation of the residuals: 20

Marco Scutari University College London

Gaussian Bayesian Networks

Parameter Learning: with Undirected Arcs

When we learn a CPDAG representing an equivalence class (e.g.
with constraint-based algorithms), such as

> pdag = iamb(sachs)

we must set the directions of the undirected arcs before learning
the parameters. We can do that automatically with cextend [7]

> dag = cextend(pdag)

by imposing a topological ordering on the nodes,

> dag = pdag2dag(pdag, ordering = node.ordering(net))

or by hand for each arc.

> pdag = set.arc(pdag, from = "praf", to = "pmek",

+ check.cycles = FALSE)

Marco Scutari University College London

Gaussian Bayesian Networks

Parameter Learning: Other Methods

We can use a list containing coef, sd, fitted and resid to set each
node parameters’ from other models, either replacing parts of a Bayesian
network returned by bn.fit() or creating a new one with
custom.fit().

> dPKA = list(coef = c("(Intercept)" = 1, "PKC" = 1), sd = 2))

> dPKC = list(coef = c("(Intercept)" = 1), sd = 2))

> bn = custom.fit(net, dist = list(PKA = dPKA, PKC = dPKC, ...))

There are shortcuts to do that directly for the penalized package [15],

> library(penalized)

> bn$pmek = penalized(pmek, penalized = ~ praf, data = sachs,

+ lambda2 = 0.1, trace = FALSE)

and for lm() and glm():

> bn.pmek = lm(pmek ~ praf, data = sachs, na.action = "na.exclude",

+ weight = runif(nrow(sachs)))

Marco Scutari University College London

Gaussian Bayesian Networks

What Kind of Network Structures Did We Learn?

inter.iamb(...)

praf

pmek

plcg PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38 pjnk

hc(...)

praf

pmek

plcg

PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38 pjnk

tabu(...)

praf

pmek

plcg

PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38

pjnk

rsmax2(...)

praf

pmek

plcg

PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38 pjnk

They look nothing like the one validated from literature...

Marco Scutari University College London

Gaussian Bayesian Networks

Parametric Assumptions: Variables Are Not Normal

expression levels

de
ns

ity

−200 0 200 400 600 800 1000

PIP2

0 200 400 600 800 1000

PIP3

−100 −50 0 50 100 150 200

pmek

−100 −50 0 50 100 150 200

P38

They are not even symmetric...

Marco Scutari University College London

Gaussian Bayesian Networks

Parametric Assumptions: Dependencies Are Not Linear

PKC

P
K

A

0
10

00
20

00
30

00
40

00

0 20 40 60 80 100

●
● ●

●

●

●

●

● ●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●●

●
●

● ●● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●●

● ●

● ● ●

●

●
● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

● ●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

● ●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

● ●
●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

● ●
●

●● ●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●●

●

●

●

●
●

●

● ●

●

● ●
●

●

●
●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●●
●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●●

●

●
●

●●

●

●
●●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●●

● ●

●

●

●
● ●

● ●●
●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●●

●
●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●●●
●

●

●

●

●

●
● ●

● ●
●

●● ●●● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

● ●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●●
● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

● ●

●
● ●

●

●
● ●

●

●●
●

●
●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●
●

●

●

●● ●
●

●

●●

●
●
●

●●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●

●
● ●

●

The regression line is nearly flat...

Marco Scutari University College London

Discrete Bayesian Networks

Marco Scutari University College London

Discrete Bayesian Networks

Transforming the Data & Parametric Assumptions

Since we cannot use Gaussian Bayesian networks on the raw data,
we must transform them and possibly change our parametric
assumptions. For example, we can:

� transform each variable using a Box-Cox transform [35] to make
it normal (or at least symmetric);

� discretise each variable [20, 34] using quantiles or fixed-length
intervals;

� jointly discretise all the variables [16] into a small number of
intervals by iteratively collapsing the intervals defined by their
quantiles.

The last choice is the only one that gets rid of both normality and
linearity assumptions while trying to preserve the dependence
structure of the data.

Marco Scutari University College London

Discrete Bayesian Networks

Discretize with Hartemink’s Method

Hartemink’s method [16] is designed to preserve pairwise
dependencies as much as possible, unlike marginal discretisation
methods.

> library(bnlearn)

> dsachs = discretize(sachs, method = "hartemink",

+ breaks = 3, ibreaks = 60, idisc = "quantile")

Data are first marginalised in 60 intervals, which are subsequently
collapsed while reducing the mutual information between the
variables as little as possible. The process stops when each variable
has 3 levels (i.e. low, average and high expression).

Marco Scutari University College London

Discrete Bayesian Networks

Discrete Bayesian Networks

Each variable in the dsachs data frame is now a factor with three levels
(low, average and high concentration). The local distribution of each
node is a set of conditional distributions, one for each configuration of
the levels of the parents.

, , PKC = (1,9.73]

PKA

praf (1.95,547] (547,777] (777,4.49e+03]

(1.61,39.5] 0.3383085 0.2040816 0.2352941

(39.5,62.6] 0.2885572 0.4897959 0.3921569

(62.6,552] 0.3731343 0.3061224 0.3725490

, , PKC = (9.73,20.2]

PKA

praf (1.95,547] (547,777] (777,4.49e+03]

(1.61,39.5] 0.3302326 0.3095238 0.3088235

(39.5,62.6] 0.3023256 0.2857143 0.3823529

(62.6,552] 0.3674419 0.4047619 0.3088235

Marco Scutari University College London

Discrete Bayesian Networks

Posterior Maximisation using deal

deal implements learning using a Bayesian approach that supports
discrete and mixed data assuming a conditional Gaussian distribution [2].
Structure learning is done with a hill-climbing search maximising the
posterior density of the network (as in hc(..., score = "bde") in
bnlearn).

> library(deal)

> deal.net = network(dsachs)

> prior = jointprior(deal.net, N = 5)

> deal.net = learn(deal.net, dsachs, prior)$nw

> deal.best = autosearch(deal.net, dsachs, prior)

> bnlearn:::fcat(deal::modelstring(deal.best$nw))

[praf|pmek][pmek][plcg|PIP3][PIP2|plcg:PIP3][PIP3]

[p44.42][pakts473|p44.42][PKA|p44.42:pakts473][PKC|P38]

[P38][pjnk|PKC:P38]

Marco Scutari University College London

Discrete Bayesian Networks

Simulated Annealing using catnet

catnet [1] learns the network structure in two steps. First, it learns the
node ordering from the data using simulated annealing [3],

> library(catnet)

> netlist1 = cnSearchSA(dsachs)

unless provided by the user.

> netlist2 = cnSearchOrder(dsachs, maxParentSet = 5,

+ nodeOrder = sample(names(dsachs)))

Then it performs an exhaustive search among the networks with the
given node ordering and returns the maximum likelihood estimate.

> catnet.best = cnFindBIC(netlist1, nrow(dsachs))

> catnet.best

A catNetwork object with 11 nodes, 1 parents, 3 categories,

Likelihood = -9.904293 , Complexity = 50 .

Marco Scutari University College London

Discrete Bayesian Networks

PC Algorithm using pcalg

pcalg [19] implements the PC algorithm [31], and it is specifically
designed to learn causal effects from both discrete and continuous data.
pcalg can also account for the effects of latent variables through a
modified PC algorithm known as Fast Causal Inference (FCI) [31, 4].

> library(pcalg)

> suffStat = list(dm = dsachs, nlev = sapply(dsachs, nlevels),

+ adaptDF = FALSE)

> pcalg.net = pc(suffStat, indepTest = disCItest, p = ncol(dsachs),

+ alpha = 0.05)

> pcalg.net@graph

A graphNEL graph with undirected edges

Number of Nodes = 11

Number of Edges = 0

From the code above, we can also see how to implement custom
conditional independence tests and pass them to pc() and fci() via the
indepTest argument.

Marco Scutari University College London

Discrete Bayesian Networks

Learning from Ordinal Data with bnlearn

The categories in the discretised variables are ordered, so we are
discarding information if we assume they come from a multinomial
distribution. An appropriate test is the Jonckheere-Terpstra test [8]
which will be available soon� in the next release of bnlearn.

> library(bnlearn)

> print(iamb(dsachs, test = "jt"))

Bayesian network learned via Constraint-based methods

model:

[partially directed graph]

nodes: 11

arcs: 8

[...]

learning algorithm: Incremental Association

conditional independence test: Jonckheere-Terpstra Test

alpha threshold: 0.05

tests used in the learning procedure: 223

Marco Scutari University College London

Discrete Bayesian Networks

What Kind of Network Structures Did We Learn?

deal package

P38 p44.42

pakts473

PIP2

PIP3

pjnk PKA

PKC plcg

pmek

praf

catnet package

P38 p44.42

pakts473

PIP2

PIP3

pjnk PKA

PKC

plcg

pmek

praf

pcalg package

P38

p44.42

pakts473

PIP2
PIP3

pjnk
PKA

PKC

plcg

pmek

praf

bnlearn package

P38 p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

Again, they look nothing like the one validated from literature...

Marco Scutari University College London

Discrete Bayesian Networks

Moving Network Structures Between Packages

� From bnlearn to deal (and back).

> mstring = bnlearn::modelstring(net)

> dnet = deal::network(dsachs[, bnlearn::node.ordering(net)])

> dnet = deal::as.network(bnlearn::modelstring(net), dnet)

> net = bnlearn::model2network(deal::modelstring(dnet))

� From bnlearn to pcalg through graph (and back).

> pnet = new("pcAlgo", graph = as.graphNEL(net))

> net = bnlearn::as.bn(pnet@graph)

� From bnlearn to catnet (and back).

> cnet = cnCatnetFromEdges(nodes = names(dsachs),

+ edges = edges(as.graphNEL(net)))

> net = bnlearn::empty.graph(names(dsachs))

> arcs(net, ignore.cycles = TRUE) = cnMatEdges(cnet)

Marco Scutari University College London

Discrete Bayesian Networks

Parameter Learning: Fitting and Modifying

All the packages we covered, with the exception of bnlearn, fit the
parameters of the network when they learn its structure. As was the case
for Gaussian Bayesian networks, in bnlearn we can compute the
maximum likelihood estimates with

> fitted = bn.fit(net, dsachs, method = "mle")

and, in addition, the Bayesian posterior estimates with

> fitted = bn.fit(net, dsachs, method = "bayes", iss = 5)

while controlling the relative weight of the (flat) prior distribution with
the iss argument. And we can also modify fitted or create it from
scratch.

> new.cpt = matrix(c(0.1, 0.2, 0.3, 0.2, 0.5, 0.6, 0.7, 0.3, 0.1),

+ dimnames = list(pmek = levels(dsachs$pmek),

+ pjnk = levels(dsachs$pjnk)),

+ byrow = TRUE, ncol = 3)

> fitted$pmek = as.table(new.cpt)

Marco Scutari University College London

Discrete Bayesian Networks

Exporting Bayesian Networks to Other Software Packages

bnlearn can export discrete Bayesian networks to software packages such
as Hugin, GeNIe or Netica by writing BIF, DSC and NET files.

> write.dsc(fitted, file = "bnlearn.dsachs.dsc")

Conversely, bnlearn can import discrete Bayesian networks created with
those software packages by reading the BIF, DSC and NET files they
create.

> fitted = read.dsc("bnlearn.dsachs.dsc")

As an example, that’s how a node looks like in a DSC file.

node pmek {

type : discrete [3] = {"[1_21.1]", "[21.1_27.4]", "[27.4_389]"};

}

probability (pmek | pjnk) {

(0) : 0.3622590, 0.2506887, 0.3870523;

(1) : 0.3828909, 0.1811209, 0.4359882;

(2) : 0.3763309, 0.2547093, 0.3689599;

}

Marco Scutari University College London

Model Averaging and

Interventional Data

Marco Scutari University College London

Model Averaging and Interventional Data

Model Averaging

The results of both structure and parameter learning are noisy in most
real-world settings, due to limitations in the data and in our knowledge of
the processes that control them. Since parameters are learned conditional
on the results of structure learning, it’s a good idea to use model
averaging to obtain a stable network structure from the data. We can
generate the networks to average in a few different ways:

� Frequentist: using nonparametric bootstrap and learning one network
from each bootstrap sample (aka bootstrap aggregation or bagging)
[9].

� Full Bayesian: using Markov Chain Mote Carlo sampling. from the
posterior P(G | D) [10].

� MAP Bayesian: learning a set of network structures with high posterior
probability from the original data.

Marco Scutari University College London

Model Averaging and Interventional Data

Frequentist Model Averaging: Bootstrap Aggregation

> library(bnlearn)

> boot = boot.strength(data = dsachs, R = 200, algorithm = "hc",

+ algorithm.args = list(score = "bde", iss = 10))

> boot[(boot$strength > 0.85) & (boot$direction >= 0.5),]

from to strength direction

1 praf pmek 1.000 0.5675000

23 plcg PIP2 0.990 0.5959596

24 plcg PIP3 1.000 0.9900000

34 PIP2 PIP3 1.000 0.9950000

56 p44.42 pakts473 1.000 0.6175000

57 p44.42 PKA 0.995 1.0000000

67 pakts473 PKA 1.000 1.0000000

89 PKC P38 1.000 0.5325000

90 PKC pjnk 1.000 0.9850000

100 P38 pjnk 0.965 1.0000000

> avg.boot = averaged.network(boot, threshold = 0.85)

Marco Scutari University College London

Model Averaging and Interventional Data

Setting the Threshold

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold = 0.915

arc strengths

C
D

F
(a

rc
 s

tr
en

gt
hs

)

●

●

●
●●

●●
●●

●●●
●

● ● ● ●

●

We can use the threshold we learn from the data [30] instead of
specifying it with threshold, and investigate it with plot(boot).

Marco Scutari University College London

Model Averaging and Interventional Data

MAP Bayesian Model Averaging: High-Posterior Networks

> nodes = names(dsachs)

> start = random.graph(nodes = nodes, method = "ic-dag", num = 200)

> netlist = lapply(start, function(net) {

+ hc(dsachs, score = "bde", iss = 10, start = net)

+ })

> rnd = custom.strength(netlist, nodes = nodes)

> head(rnd[(rnd$strength > 0.85) & (rnd$direction >= 0.5),], n = 9)

from to strength direction

1 praf pmek 1 0.5000

11 pmek praf 1 0.5000

23 plcg PIP2 1 0.5000

24 plcg PIP3 1 1.0000

33 PIP2 plcg 1 0.5000

34 PIP2 PIP3 1 1.0000

66 pakts473 p44.42 1 0.7975

76 PKA p44.42 1 0.8875

77 PKA pakts473 1 0.5900

> avg.start = averaged.network(rnd, threshold = 0.85)

Marco Scutari University College London

Model Averaging and Interventional Data

Frequentist Model Averaging: with catnet

Structure learning algorithms implemented in other packages can be used
for model averaging with custom.strength(); the only requirement is
that netlist must be a list of bn objects or a list of arc sets stored in
2-columns matrices (like the ones returned by the arcs() function).

> library(catnet)

> netlist = vector(200, mode = "list")

> ndata = nrow(dsachs)

> netlist = lapply(netlist, function(net) {

+ boot = dsachs[sample(ndata, replace = TRUE),]

+ nets = cnSearchOrder(boot)

+ best = cnFindBIC(nets, ndata)

+ cnMatEdges(best)

+ })

> sa = custom.strength(netlist, nodes = nodes)

> avg.catnet = averaged.network(sa, threshold = 0.85)

Marco Scutari University College London

Model Averaging and Interventional Data

Averaged Bayesian Networks

avg.boot

P38

p44.42

pakts473 PIP2

PIP3pjnk PKA

PKC plcg

pmek

praf

avg.start

P38

p44.42

pakts473

PIP2

PIP3pjnk

PKAPKC

plcg

pmek

praf

avg.catnet

P38 p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

The structure is stable overall, but the networks are still quite
different from the validated network...

Marco Scutari University College London

Model Averaging and Interventional Data

Modelling Interventions

In most data sets, all observations are collected under the same general
conditions and can be modelled with a single Bayesian network, because
they follow the same probability distribution.

However, this is not the case when samples from different experiments
are analysed together with a single, encompassing model. In addition to
the data set we have analysed so far, which is subject only to a general
stimulus meant to activate the desired paths, we have 9 other data sets
subject to different targeted stimolatory cues and inhibitory interventions.

> isachs = read.table("sachs.interventional.txt", header = TRUE,

+ colClasses = "factor")

Such data are often called interventional, because the values of specific
variables in the model are set by an external intervention of the
investigator.

Marco Scutari University College London

Model Averaging and Interventional Data

Modelling an Intervention on pmek

model without interventions

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

model with interventions

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

Marco Scutari University College London

Model Averaging and Interventional Data

Modelling Intervention with an Extra Node

One intuitive way to model these data sets with a single, encompassing
Bayesian network is to include the intervention INT in the network and to
make all variables depend on it with a whitelist.

> wh = matrix(c(rep("INT", 11), names(isachs)[1:11]), ncol = 2)

> bn.wh = tabu(isachs, whitelist = wh, score = "bde",

+ iss = 10, tabu = 50)

We can also let the structure learning algorithm decide which arcs
connecting INT to the other nodes should be included in the network,
and blacklist all the arcs towards INT.

> tiers = list("INT", names(isachs)[1:11])

> bl = tiers2blacklist(nodes = tiers)

> bn.tiers = tabu(isachs, blacklist = bl,

+ score = "bde", iss = 10, tabu = 50)

tiers2blacklist() builds a blacklist such that all arcs going from a
node in a particular element of the nodes argument to a node in one of
the previous elements are blacklisted.

Marco Scutari University College London

Model Averaging and Interventional Data

Modelling Intervention with an Extra Node

All nodes depend on INT

praf

pmek

plcg

PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38

pjnk

INT

Relevant nodes depend on INT

praf

pmek

plcg

PIP2

PIP3

p44.42

pakts473

PKA

PKC

P38

pjnk

INT

Marco Scutari University College London

Model Averaging and Interventional Data

Adapting Posterior Probability Estimates

A better solution is to remove INT from the data,

> INT = sapply(1:11, function(x) {

+ which(isachs$INT == x) })

> isachs = isachs[, 1:11]

> nodes = names(isachs)

> names(INT) = nodes

and incorporate it into structure learning using a modified posterior
probability score (mbde) that takes its effect into account [5].

> start = random.graph(nodes = nodes,

+ method = "melancon", num = 200, burn.in = 10^5,

+ every = 100)

> netlist = lapply(start, function(net) {

+ tabu(isachs, score = "mbde", exp = INT,

+ iss = 1, start = net, tabu = 50) })

> arcs = custom.strength(netlist, nodes = nodes, cpdag = FALSE)

> bn.mbde = averaged.network(arcs, threshold = 0.85)

Marco Scutari University College London

Model Averaging and Interventional Data

Modelling Intervention with an Extra Node

bn.mbde

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

validated network

P38

p44.42

pakts473

PIP2

PIP3

pjnk

PKA

PKC plcg

pmek

praf

Marco Scutari University College London

Model Averaging and Interventional Data

Comparing Network Structures

When we compare two Bayesian networks, it is important to compare
their equivalence classes through the respective CPDAGs instead of the
networks themselves.

> learned.spec = paste("[plcg][PKC][praf|PKC][PIP3|plcg:PKC]",

+ "[PKA|PKC][pmek|praf:PKA:PKC][PIP2|plcg:PIP3][p44.42|PKA:pmek]",

+ "[pakts473|praf:p44.42:PKA][pjnk|pmek:PKA:PKC][P38|PKA:PKC:pjnk]")

> true.spec = paste("[PKC][PKA|PKC][praf|PKC:PKA][pmek|PKC:PKA:praf]",

+ "[p44.42|pmek:PKA][pakts473|p44.42:PKA][P38|PKC:PKA]",

+ "[pjnk|PKC:PKA][plcg][PIP3|plcg][PIP2|plcg:PIP3]")

> true = model2network(true.spec)

> learned = model2network(learned.spec)

> unlist(compare(true, learned))

tp fp fn

16 4 1

> unlist(compare(cpdag(true), cpdag(learned)))

tp fp fn

14 6 3

Marco Scutari University College London

Inference

Marco Scutari University College London

Inference

Inference in the Sachs et al. Paper

In their paper, Sachs et al. used the validated network to
substantiate two claims:

1. a direct perturbation of p44.42 should influence pakts473;

2. a direct perturbation of p44.42 should not influence PKA.

The probability distributions of p44.42, pakts473 and PKA were
then compared with the results of two ad-hoc experiments to
confirm the validity and the direction of the inferred causal
influences.

> for (i in names(isachs))

+ levels(isachs[, i]) = c("LOW", "AVG", "HIGH")

> fitted = bn.fit(true, isachs, method = "bayes")

For convenience, we rename the levels of each variable to LOW,
AVERAGE and HIGH.

Marco Scutari University College London

Inference

Exact Inference with gRain

gRain [18] implements exact inference for discrete Bayesian networks via
junction tree belief propagation [21]. We can export a network fitted with
bnlearn,

> library(gRain)

> jtree = compile(as.grain(fitted))

set the evidence (i.e. the event we condition on),

> jprop = setFinding(jtree, nodes = "p44.42", states = "LOW")

and compare conditional and unconditional probabilities.

> querygrain(jtree, nodes = "pakts473")$pakts473

pakts473

LOW AVG HIGH

0.60893407 0.31041282 0.08065311

> querygrain(jprop, nodes = "pakts473")$pakts473

pakts473

LOW AVG HIGH

0.665161776 0.333333333 0.001504891

Marco Scutari University College London

Inference

Graphical Comparison of Probability Distributions

P(pakts473)

probability

pa
kt

s4
73

LOW

AVG

HIGH

0.0 0.2 0.4 0.6

without intervention
with intervention

P(PKA)

probability

P
K

A

LOW

AVG

HIGH

0.2 0.4 0.6

without intervention
with intervention

Causal and non-causal use of Bayesian networks are different...

Marco Scutari University College London

Inference

Approximate Inference with bnlearn

bnlearn implements approximate inference via rejection sampling (called
logic sampling in this setting), and soon� via importance sampling
(likelihood weighting) [22]. cpdist generates random observations from
fitted for the nodes nodes conditional on the evidence evidence.

> particles = cpdist(fitted, nodes = "pakts473",

+ evidence = (p44.42 == "LOW"))

> prop.table(table(particles))

particles

LOW AVG HIGH

0.665686790 0.332884451 0.001428759

On the other hand, cpquery returns the probability of a specific event.

> cpquery(fitted, event = (pakts473 == "AVG"),

+ evidence = (p44.42 == "LOW"))

[1] 0.3319946

Both can be configured to generate samples in parallel (using the snow
or parallel packages) and/or in small batches to fit available memory.

Marco Scutari University College London

Inference

Approximate Inference with bnlearn

Compared to exact inference in gRain, approximate inference in bnlearn
often requires more memory and is much slower. However, it is more
flexible and allows much more complicated queries.

> cpquery(fitted,

+ event = (pakts473 == "LOW") & (PKA != "HIGH"),

+ evidence = (p44.42 == "LOW") | (praf == "LOW"))

[1] 0.5593692

> cpdist(fitted, n = 6, nodes = nodes(fitted),

+ evidence = (p44.42 == "LOW") | (praf == "LOW") &

+ (pakts473 %in% c("LOW", "HIGH")))

P38 p44.42 pakts473 PIP2 PIP3 pjnk PKA PKC plcg pmek praf

1 AVG AVG LOW LOW AVG LOW HIGH LOW LOW LOW LOW

2 LOW AVG LOW LOW AVG AVG AVG AVG LOW LOW LOW

3 HIGH LOW LOW LOW LOW AVG LOW LOW LOW LOW HIGH

We can also generate random observations from the unconditional
distribution with cpdist(fitted, n = 6, TRUE, TRUE) or
rbn(fitted, n = 6) as a term of comparison.

Marco Scutari University College London

Thanks for attending!

Marco Scutari University College London

References

Marco Scutari University College London

References

References I

[1] N. Balov and P. Salzman.
catnet: Categorical Bayesian Network Inference, 2012.
R package version 1.13.4.

[2] S. G. Bøttcher and C. Dethlefsen.
deal: A Package for Learning Bayesian Networks.
Journal of Statistical Software, 8(20):1–40, 2003.

[3] V. Černý.
Thermodynamical Approach to the Traveling Salesman Problem: An Efficient
Simulation Algorithm.
Journal of Optimization Theory and Applications, 45(1):41–51, 1985.

[4] D. Colombo, M. H. Maathuis, M. Kalish, and T. S. Richardson.
Learning High-Dimensional Directed Acyclic Graphs with Latent and Selection
Variables.
Annals of Statistics, 40(1):294–321, 2012.

[5] G. F. Cooper and C. Yoo.
Causal Discovery from a Mixture of Experimental and Observational Data.
In UAI ’99: Proceedings of the 15th Annual Conference on Uncertainty in
Artificial Intelligence, pages 116–125. Morgan Kaufmann, 1995.

Marco Scutari University College London

References

References II

[6] G. Csardi and T. Nepusz.
The igraph Software Package for Complex Network Research.
InterJournal, Complex Systems, 1695:1–38, 2006.

[7] D. Dor and M. Tarsi.
A Simple Algorithm to Construct a Consistent Extension of a Partially Oriented
Graph.
Technical report, UCLA, Cognitive Systems Laboratory, 1992.
Available as Technical Report R-185.

[8] D. I. Edwards.
Introduction to Graphical Modelling.
Springer, 2nd edition, 2000.

[9] N. Friedman, M. Goldszmidt, and A. Wyner.
Data Analysis with Bayesian Networks: A Bootstrap Approach.
In Proceedings of the 15th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-99), pages 206–215. Morgan Kaufmann, 1999.

Marco Scutari University College London

References

References III

[10] N. Friedman and D. Koller.
Being Bayesian about Bayesian Network Structure: A Bayesian Approach to
Structure Discovery in Bayesian Networks.
Machine Learning, 50(1–2):95–126, 2003.

[11] N. Friedman, D. Pe’er, and I. Nachman.
Learning Bayesian Network Structure from Massive Datasets: The “Sparse
Candidate” Algorithm.
In Proceedings of 15th Conference on Uncertainty in Artificial Intelligence (UAI),
pages 206–215. Morgan Kaufmann, 1999.

[12] D. Geiger and D. Heckerman.
Learning Gaussian Networks.
Technical report, Microsoft Research, Redmond, Washington, 1994.
Available as Technical Report MSR-TR-94-10.

[13] R. Gentleman, E. Whalen, W. Huber, and S. Falcon.
graph: A package to handle graph data structures.
R package version 1.37.7.

Marco Scutari University College London

References

References IV

[14] J. Gentry, L. Long, R. Gentleman, S. Falcon, F. Hahne, D. Sarkar, and K. D.
Hansen.
Rgraphviz: Provides plotting capabilities for R graph objects.
R package version 2.3.8.

[15] J. J. Goeman.
penalized R package, 2012.
R package version 0.9-41.

[16] A. J. Hartemink.
Principled Computational Methods for the Validation and Discovery of Genetic
Regulatory Networks.
PhD thesis, School of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2001.

[17] D. Heckerman, D. Geiger, and D. M. Chickering.
Learning Bayesian Networks: The Combination of Knowledge and Statistical
Data.
Machine Learning, 20(3):197–243, September 1995.
Available as Technical Report MSR-TR-94-09.

Marco Scutari University College London

References

References V

[18] Søren Højsgaard.
Graphical Independence Networks with the gRain Package for R.
Journal of Statistical Software, 46(10):1–26, 2012.

[19] M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann.
Causal Inference Using Graphical Models with the R Package pcalg.
Journal of Statistical Software, 47(11):1–26, 2012.

[20] R. Kohavi and M. Sahami.
Error-Based and Entropy-Based Discretization of Continuous Features.
In Proceedings of the 2nd International Conference on Knowledge Discovery and
Data Mining (KDD ’96), pages 114–119. AAAI Press, 1996.

[21] D. Koller and N. Friedman.
Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[22] K. Korb and A. Nicholson.
Bayesian Artificial Intelligence.
Chapman and Hall, 2nd edition, 2010.

Marco Scutari University College London

References

References VI

[23] P. Larrañaga, B. Sierra, M. J. Gallego, M. J. Michelena, and J. M. Picaza.
Learning Bayesian Networks by Genetic Algorithms: A Case Study in the
Prediction of Survival in Malignant Skin Melanoma.
In Proceedings of the 6th Conference on Artificial Intelligence in Medicine in
Europe (AIME ’97), pages 261–272. Springer, 1997.

[24] D. Margaritis.
Learning Bayesian Network Model Structure from Data.
PhD thesis, School of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, 2003.
Available as Technical Report CMU-CS-03-153.

[25] R. Nagarajan, M. Scutari, and S. Lèbre.
Bayesian Networks in R with Applications in Systems Biology.
Use R! series. Springer, 2013.

[26] R. E. Neapolitan.
Learning Bayesian Networks.
Prentice Hall, 2003.

Marco Scutari University College London

References

References VII

[27] J. Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[28] S. J. Russell and P. Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

[29] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan.
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell
Data.
Science, 308(5721):523–529, 2005.

[30] M. Scutari and R. Nagarajan.
On Identifying Significant Edges in Graphical Models of Molecular Networks.
Artificial Intelligence in Medicine, 57(3):207–217, 2013.
Special Issue containing the Proceedings of the Workshop “Probabilistic Problem
Solving in Biomedicine” of the 13th Artificial Intelligence in Medicine (AIME)
Conference, Bled (Slovenia), July 2, 2011.

Marco Scutari University College London

References

References VIII

[31] P. Spirtes, C. Glymour, and R. Scheines.
Causation, Prediction, and Search.
MIT Press, 2nd edition, 2001.

[32] I. Tsamardinos, C. F. Aliferis, and A. Statnikov.
Algorithms for Large Scale Markov Blanket Discovery.
In Proceedings of the 16th International Florida Artificial Intelligence Research
Society Conference, pages 376–381. AAAI Press, 2003.

[33] I. Tsamardinos, L. E. Brown, and C. F. Aliferis.
The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm.
Machine Learning, 65(1):31–78, 2006.

[34] W. N. Venables and B. D. Ripley.
Modern Applied Statistics with S.
Springer, 4th edition, 2002.

[35] K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo.
Model-Based Clustering and Data Transformations for Gene Expression Data.
Bioinformatics, 17(10):977–987, 2001.

Marco Scutari University College London

	Bayesian Networks Essentials
	Causal Protein-Signalling Network from Sachs et al.
	Gaussian Bayesian Networks
	Discrete Bayesian Networks
	Model Averaging and Interventional Data
	Inference
	Thanks for attending!
	References

