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Graphical Models

Graphical Models

Graphical models are defined by:

• a network structure, either an undirected graph (Markov
networks [3], gene association networks, correlation networks,
etc.) or a directed graph (Bayesian networks [9]). Each node
corresponds to a random variable;

• a global probability distribution, which can be factorised into
a small set of local probability distributions according to the
topology of the graph.

This combination allows a compact representation of the joint
distribution of large numbers of random variables and simplifies
inference on its parameters.
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Graphical Models

A Simple Bayesian Network: Watson’s Lawn
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Graphical Models

The Problem

Most literature on the analysis of graphical models focuses on the
study of the parameters of local probability distributions (such as
conditional probabilities or partial correlations).

• Comparing models learned with different algorithms is
difficult, because they maximise different scores, use different
estimators for the parameters, work under different sets of
hypotheses, etc. [15].

• Unless the true global probability distribution is known it is
difficult to assess the quality of the estimated models.

• The few available measures of structural difference are
completely descriptive in nature (i.e. Hamming distance [8] or
SHD [21]), and are difficult to interpret.

Focusing on network structures sidesteps most of these issues.
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Modelling Undirected Network
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Modelling Undirected Network Structures

Edges and Univariate Bernoulli Random Variables

Each edge ei in an undirected graph U = (V, E) has only two
possible states,

ei =

{
1 if ei ∈ E
0 otherwise

.

Therefore it can be modelled as a Bernoulli random variable Ei,

ei ∼ Ei =

{
1 ei ∈ E with probability pi

0 ei 6∈ E with probability 1− pi
,

where pi is the probability that the edge ei appears in the graph.
We will denote it as Ei ∼ Ber(pi).

Marco Scutari University of Padova



Modelling Undirected Network Structures

Edge Sets as Multivariate Bernoulli

The natural extension of this approach is to model any set W of
edges (such as E or {V ×V}) as a multivariate Bernoulli random
variable W ∼ Berk(p). W is uniquely identified by the parameter
set

p = {pw : w ⊆W,w 6= ∅} ,

which represents the dependence structure [10] among the
marginal distributions Wi ∼ Ber(pi), i = 1, . . . , k of the edges.

The parameter set p can be estimated using m bootstrap samples
[4] as suggested in Friedman et al. [5] or Imoto et al. [7].
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Modelling Undirected Network Structures

Second Order Properties

The marginal variances of the edges are bounded, because

pi ∈ [0, 1] =⇒ σii = pi − p2
i ∈

[
0,

1

4

]
.

Covariances are bounded in the same interval (in modulus).
Similar bounds exist for the eigenvalues λ1, . . . , λk of the
covariance matrix Σ,

0 6 λi 6
k

4
and 0 6

k∑
i=1

λi 6
k

4
.

Furthermore, if W1 and W2 are two multivariate Bernoulli
random variables, then they are independent if and only if

W1 ⊥⊥W2 ⇐⇒ COV(W1,W2) = O.
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Measures of Structure Variability

Entropy of the Bootstrapped Network Structures

Consider the graphical models U1, . . . ,Um learned from the bootstrap
samples. Three scenarios are possible:

• minimum entropy: all the models learned from the bootstrap
samples have the same structure. In this case:

pi =

{
1 if ei ∈ E
0 otherwise

and Σ = O;

• intermediate entropy: several models are observed with different
frequencies mb,

∑
mb = m, so

p̂i =
1

m

∑
b : ei∈Eb

mb and p̂ij =
1

m

∑
b : ei∈Eb,ej∈Eb

mb;

• maximum entropy: all possible models appear with the same
frequency, which results in

pi =
1

2
and Σ =

1

4
Ik.
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Measures of Structure Variability

Entropy of the Bootstrapped Network Structures

maximum entropy

minimum
entropy
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Measures of Structure Variability

Univariate Measures of Variability

• The generalised variance

VARG(Σ) = det(Σ) =

k∏
i=1

λi ∈
[
0,

1

4k

]
.

• The total variance (or total variability)

VART (Σ) = tr(Σ) =

k∑
i=1

λi ∈
[
0,
k

4

]
.

• The squared Frobenius matrix norm

VARN (Σ) = |||Σ−k
4
Ik|||2F =

k∑
i=1

(
λi −

k

4

)2

∈
[
k(k − 1)2

16
,
k3

16

]
.
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Measures of Structure Variability

Measures of Structure Variability

All of these measures can be rescaled to vary in the [0, 1] interval and to
associate high values to networks whose structure display a high entropy
in the bootstrap samples:

VART (Σ) =
4

k
VART (Σ), VARG(Σ) = 4kVARG(Σ), VARN (Σ) =

k3 − 16VARN (Σ)

k(2k − 1)
.

Furthermore, these measures can be easily translated into asymptotic or
Monte Carlo tests (via parametric bootstrap) having the maximum
entropy covariance matrix as the null hypothesis.

4m tr(Σ̂)
.∼ χ2

mk

√
n
[
4k det(Σ̂)− 1

]
.∼ N(0, 2k)

mk

2
k

√
4k det(Σ̂)

.∼ Ga
(
k(m+ 1− k)

2
, 1

)
|||Σ̂− 1

4
|||2F

.∼ 1

8m
χ2

1
2k(k+1)
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Measures of Structure Variability

Structure Variability (Total Variance)

maximum entropy
minimum
entropy
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Measures of Structure Variability

Structure Variability (Squared Frobenius Matrix Norm)

maximum entropy
minimum
entropy
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Modelling Directed Acyclic
Network Structures
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Modelling Directed Acyclic Network Structures

Edges and Univariate Trinomial Random Variables

Each arc aij in a directed acyclic graph G = (V, A) has three
possible states,

aij =


−1 if aij =←−aij = {vi ← vj}
0 if aij 6∈ A, denoted with åij

1 if aij = −→aij = {vi → vj}
,

and therefore it can be modelled as a Trinomial random variable
Ai, which is essentially a multinomial random variable with three
states. Variability measures (and their normalised variants) can be
extended from the undirected case as

VAR(Ai) = VAR(Ei) + 4P(−→aij)P(←−aij) ∈ [0, 1]
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Modelling Directed Acyclic Network Structures

Edge Sets as Multivariate Trinomials

As before, the natural extension to model any set W of arcs is to
use a multivariate Trinomial random variable W ∼ Trik(p) and to
estimate its parameters via nonparametric bootstrap.

However:

• the acyclicity constraint of Bayesian networks makes deriving
exact results very difficult because it cannot be written in
closed form;

• the score equivalence of most structure learning strategies
makes inference on Trik(p) tricky unless particular care is
taken (i.e. both possible orientations of many arcs result in
equivalent probability distributions, so the algorithms cannot
choose between them).
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Modelling Directed Acyclic Network Structures

Properties of the Multivariate Trinomial

In the maximum entropy case we have the following approximate
results [11]:

P(−→aij) = P(←−aij) '
1

4
+

1

4(n− 1)
and P(åij) '

1

2
− 1

2(n− 1)
.

where n is the number of nodes of the graph. Furthermore, we
have that

VAR(Aij) '
1

2
+

1

2(n− 1)
→ 1

2
as n→∞

and

|COV(Aij , Akl)| / 4

[
3

4
− 1

4(n− 1)

]2 [1

4
+

1

4(n− 1)

]2

→ 9

64
as n→∞.
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Modelling Directed Acyclic Network Structures

Measures of Structure Variability

Since variances are bounded in [0, 1] we can define again

VART (Σ) =
1

k
VART (Σ) and VARG(Σ) = VARG(Σ).

We can also compute VARN (Σ) using a Monte Carlo estimate for
COV(Aij , Akl) based on Ide and Cozman’s algorithm [6]. The
same holds for hypothesis tests.
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Determining Statistically Significant Functional Relationships

The Problem

• transcriptions of regulatory (gene) networks controlling both
myogenic and adipogenic differentiation are still under active
investigation.

• myogenic and adipogenic differentiation pathways are typically
considered non-overlapping, but Taylor-Jones et al. [20] has
shown that myogenic progenitors from aged mice co-express
some aspects of both myogenic and adipogenic gene
programs.

• their balance is apparently regulated by Wnt signalling
according to Vertino et al. [22], but there have been few
efforts to understand the interactions between these two
networks.
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Determining Statistically Significant Functional Relationships

The Experimental Setting

The clonal gene expression data was generated from RNA isolated
from 34 clones of myogenic progenitors obtained from 24-months
old mice, cultured to confluence and allowed to differentiate for 24
hours. RT–PCR was used to quantify the expression of 12 genes:

• myogenic regulatory factors: Myo-D1, Myogenin and Myf-5.

• adipogenesis-related genes: FoxC2, DDIT3, C/EPB and
PPARγ.

• Wnt-related genes: Wnt5a and Lrp5.

• control genes: GAPDH, 18S and B2M.
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Determining Statistically Significant Functional Relationships

Choosing the Right Structure Learning Algorithm

VART(Σ)

GS

IAMB

Fast−IAMB

Inter−IAMB

HC

MMHC

Tabu

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Determining Statistically Significant Functional Relationships

Choosing the Right Tuning Parameters

VART(Σ)

COR

MI

MI−SH

ZF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Determining Statistically Significant Functional Relationships

Determining Significant Functional Relationships
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Significant functional relationships can be selected by filtering out
the noise in the data or by finding the closest minimum-entropy
configuration.
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Determining Statistically Significant Functional Relationships

Statistically Significant FRs

control genes:
GAPDH, 18S, B2M

DDIT3

Wnt5a

FoxC2

Myogenin

Myo-D1 LRP5

Myf-5

CEBPα

PPARγ
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Conclusions

Conclusions

• In literature inference on the structure of graphical models is
usually overlooked in favour of the inference on the
parameters of the global and local distributions.

• Rigorous inference on network structures is possible with the
appropriate multivariate distributions: multivariate Bernoulli
and multivariate Trinomial.

• In this setting we can define descriptive statistics and
hypothesis tests which are easy to interpret and apply to any
set of edges/arcs.
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Conclusions

Thank you.
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