
Bayesian Network Models for
Continuous-Time and

Structured Data

Marco Scutari
scutari@bnlearn.com

Dalle Molle Institute for
Artificial Intelligence (IDSIA)

September 7, 2022

mailto:scutari@bnlearn.com


ARROW-RIGHT Bayesian Networks: Definition and Assumptions

Continuous-Time Bayesian Networks

Bayesian Networks for Structured Data

Future Directions



A Graph and a Probability Distribution

A Bayesian network (BN) is defined by:

• a network structure, a directed acyclic graph 𝒢 in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution X with parameters Θ, which can be
factorised into smaller local probability distributions according to
the arcs present in 𝒢.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖 in 𝒢} .



Bayesian Network Structure Learning

Learning a BN ℬ = (𝒢, Θ) from a data set 𝒟 involves two steps:

P(ℬ ∣ 𝒟) = P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

Structure learning consists in finding the DAG with the best

P(𝒢 ∣ 𝒟) ∝ P(𝒢)⏟
graph prior

⋅ P(𝒟 ∣ 𝒢)⏟⏟⏟⏟⏟
marginal likelihood

= P(𝒢) ∫ P(𝒟 ∣ 𝒢, Θ) P(Θ ∣ 𝒢) 𝑑Θ

which is known as score-based learning [6]. The alternative, constraint-
based learning, uses tests following Pearl’s work on causality [14]:

𝑋𝑖 ⟂⟂𝑃 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
conditional independence

⟹ 𝑋𝑖 ⟂⟂𝐺 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
graphical separation

.

Parameter learning consists in estimating the parameters Θ𝑋𝑖
∣ Π𝑋𝑖

.



The Classic Definition and Modern Extensions

What are we assuming when trying to learn a BN? Typically that:
• observations are independent and there are nomissing values;
• all variables are observed, that is, there are no latent variables
introducing confounding in the model;

• wemeasure probabilistic associations (or rather, independencies)
and we cannot necessarily interpret them as causal.

What happens if we relax these assumptions? Many extensions suddenly
become possible, see [11] for a recent review. In this talk we will discuss:
• Learning BNs from continuous-time dynamic data [4].
• Learning BNs from heterogeneous data that are the collation of
multiple related data sets [1].

We will not discuss learning BNs from incomplete data, but we are
making progress on that front as well [3].



Check Bayesian Networks: Definition and Assumptions

ARROW-RIGHT Continuous-Time Bayesian Networks

Bayesian Networks for Structured Data

Future Directions



Continuous-Time Bayesian Networks

Continuous-Time BNs (CTBNs) are a framework for modelling
finite-state, continuous-time processes. Their graphical representation
allows for natural, cyclic dependency graphs without having to specify a
temporal granularity [9].

A CTBN consists of two components:
• A directed graph encoding conditional
independencies.

• A conditional intensity matrix (CIM) Q𝑋𝑖 ∣ u
describing the evolution process of a
variable with the parameters
• q𝑋𝑖

: a set of intensities parameterising the
exponential distributions over when the next
transition occurs.

• 𝜽𝑋𝑖
: a set of probabilities parameterising the

distribution over where the state transitions.

X1

X2 X4

X3



Constraint-Based Structure Learning?

Score-based learning was covered by Nodelman [9] in his original work
on CTBNs. For constraint-based structure learning we need a new
definition of conditional independence [4]:

Let𝒩 be a CTBNwith a graph𝒢 overX. We say that𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗
if Q𝑋𝑖 ∣ 𝑥,s = Q𝑋𝑖 ∣ s for all values 𝑥, 𝑠 of 𝑋𝑗 and S𝑋𝑖,𝑋𝑗

.

Note that conditional independence is not symmetric in CTBNs! To test it
we need to test two separate hypotheses:
• Time To Transition: independence of the waiting times (q𝑋𝑖

), tested
with an 𝐹 test to compare their exponential distributions.

• State-to-State Transition: independence of the transitions (𝜽𝑋𝑖
),

tested with a two-sample 𝜒2 test or a Kolmogorov-Smirnov test.
We test time-to-transition hypothesis first and then, if the null is rejected,
the state-to-state hypotheses. If both nulls are rejected, 𝑋𝑖 and 𝑋𝑗 are
conditionally independent.



Hypothesis Testing

Time to Transition [2]: given the exponential waiting times 𝑞𝑥∣s, 𝑞𝑥∣𝑦,s,

𝐻0 ∶
𝑞𝑥∣s

𝑞𝑥∣𝑦,s
= 1 with null 𝐹𝑟𝑎,𝑟𝑏

where 𝑟𝑎 = ∑𝑥′∈𝑋𝑖
𝑀𝑥𝑥′∣𝑦,s and 𝑟𝑏 = ∑𝑥′∈𝑋𝑖

𝑀𝑥𝑥′∣s.

State-to-State Transition [8]: given 𝜃𝑥∣s, 𝜃𝑥∣𝑦,s,

𝐻0 ∶ 𝜃𝑥∣s = 𝜃𝑥∣𝑦,s with null 𝜒2 = ∑
𝑥′∈𝑋𝑖

(𝐾 ⋅ 𝑀𝑥𝑥′∣𝑦,s − 𝐿 ⋅ 𝑀𝑥𝑥′∣s)2

𝑀𝑥𝑥′∣s + 𝑀𝑥𝑥′∣𝑦,s

where 𝐾 = √ ∑𝑘
𝑖=1 𝑀𝑥𝑥′∣s

∑𝑘
𝑖=1 𝑀𝑥𝑥′∣𝑦,s

and 𝐿 = 1
𝐾 .

We reject the (conditional) independence between the two nodes if at
least null hypothesis is rejected.



A PC Algorithm for Continuous-Time Bayesian Networks

Given how different is the definition of conditional independence, we
need to adapt the PC algorithm [5] to match.

1. Form a complete directed graph 𝒢 over X.
2. For each variable 𝑋𝑖:
2.1 Set U = {𝑋𝑗 ∈ X ∶ 𝑋𝑗 → 𝑋𝑖}, the current parent set.
2.2 For increasing values 𝑏 = 0, … , |U|:
2.2.1 For each 𝑋𝑗 ∈ U, test 𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗

for all possible subsets of size 𝑏
of U ⧵ 𝑋𝑗.

2.2.2 As soon as 𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗
for some S𝑋𝑖,𝑋𝑗

, remove 𝑋𝑗 → 𝑋𝑖 from 𝒢
and 𝑋𝑗 from U.

3. Return 𝒢.

We call this the Continuous-Time PC (CTPC) algorithm [4]. It has better
structural reconstruction accuracy than the score-based approach in [9],
but both approaches are slow: they are only practical for less than 20
variables.



CTPC Versus Score-Based Learning
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Related Data Sets

The aim: learning the structure of a BN
from a set of related data sets identified
by 𝐹, which is assumed known.

The approach: we would like to do that
by pooling information across different
data sets to distil structural features
that are common to all of them.

Themathematical formulation:
• for discrete variables, a variational
Bayesian Dirichlet score with a
hierarchical prior (BHD) [1];

• for continuous variables, using
mixed-effects models [10].

X1 X2

X3

X4

X5

F



The Hierarchical Model Behind BHD

Cat.Dir.Dir.

Cat.Dir.Dir.

Hierarchical
Model

Variational
Approximation

Thus we get BHD:

P(𝒟 ∣ 𝐹 , 𝒢) ≈
𝑁

∏
𝑖=1

|𝐹|

∏
𝑓=1

|Π𝑋𝑖|

∏
𝑗=1

[
Γ(𝑠𝑖 ̂𝜅𝑖𝑗)

Γ(𝑠𝑖 ̂𝜅𝑖𝑗 + 𝑛𝑓
𝑖𝑗)

|𝑋𝑖|

∏
𝑘=1

Γ(𝑠𝑖 ̂𝜅𝑖𝑗𝑘 + 𝑛𝑓
𝑖𝑗𝑘)

Γ(𝑠𝑖 ̂𝜅𝑖𝑗𝑘)
]

where 𝑠𝑖 ̂𝜅𝑖𝑗𝑘 = the posteriormean of𝛼𝑖𝑗𝑘 under the variationalmodel.



BHD Versus BDeu
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The BHD score:
• has better structural accuracy than BDeu when we are modelling
related data sets;

• it gets increasingly better as the number of related grows;
• it gets increasingly better as the size of (at least some of) the
individual related data sets grows.



What About Continuous Variables?

In a Gaussian BN, each node 𝑋𝑖 has distribution

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ 𝜀𝑋𝑖

with 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑋𝑖
I𝑛). (1)

Adding the node 𝐹 would make it a conditional Gaussian BN in which we
fit a separate linear regression for each data set 𝑗 identified by 𝐹:

𝑋𝑖 = 𝜇𝑖𝑗 + Π𝑋𝑖
𝜷𝑖𝑗 + 𝜀𝑋𝑖

with 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑖𝑗I𝑛𝑗
). (2)

A mixed-effects model that takes (1) and adds random effects for all Π𝑋𝑖

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ Zb𝑋𝑖

+ 𝜀𝑋𝑖
, b𝑋𝑖

∼𝑁(0, Σ), 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑋𝑖
I𝑛)

has the same form as (2),

𝑋𝑖 = (𝜇𝑖𝑗 + 𝑏0𝑗) + Π𝑋𝑖
(𝜷𝑋𝑖

+ b𝑖𝑗) + 𝜀𝑋𝑖
,

but pools information across data sets much like BHD does [12].



Pooling Versus No Pooling: Homogeneous Data
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If the data are just a single homogeneous data set, introducing mixed
effects does not degrade performance.



Pooling Versus No Pooling: Heterogeneous Data
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If the data really are a collation of related data sets, introducing mixed
effects improves both structural (SHD) and parametric accuracy (KL). The
difference becomesmore marked if the related data sets are unbalanced.



We Can do More!

• We can drop the assumption that 𝐹 is a parent of all other nodes: as
long as we have a score that can compare models with and without
random effects, we are good.

• We need not to restrict ourselves to Gaussian variables: we can use
generalised mixed-effects models as local distributions to handle a
diverse set of distributions.

• We can use random effects to model more complex structures in the
data:
• cryptic relatedness (in genetics);

• spatial dependencies;

• temporal dependencies.
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Conclusions and Future Directions

Bayesian networks are a fundamental tool in machine learning: they
subsumemanymodels [11] and handle incomplete data [3],
continuous-time time series [4] and collections of related data sets [1].

What next?

• Making CTBNs into Markov decision processes [7, 13] to model as
streaming health data where we administer medical treatments in
real time.

• A comprehensive approach to related data sets that can handle
conditional Gaussian BNs, and thus discrete and Gaussian BNs as
particular cases.

• A reanalysis of a complex environmental data set such as [15] to
explore BNs with a spatio-temporal structure.
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Thanks!

Any questions?
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