
What is Machine Learning?

Marco Scutari
scutari@idsia.ch

Dalle Molle Institute for
Artificial Intelligence (IDSIA)

March 8, 2021

mailto:scutari@idsia.ch

The Grand Vision

Machine learning studies the algorithms and statistical tools that allow
computer systems to perform specific, well-defined tasks without
explicit instructions. It is a sub-field of artificial intelligence.

Broadly speaking, in order to do this:
1. We need a working model of the world that describes the task and

its context in a way a computer can understand.
2. We need a goal: how do wemeasure the performance of the model?

Because that is what we optimise for; usually it is the ability to
predict new events.

3. We encode our knowledge of the world drawing information from
training data, experts or both; this is called learning.

4. The computer system uses the model as a proxy of reality and, as
new inputs come in, to perform inference and decide if/how to
perform the assigned task.

Robotics

Boston Dynamics robots can walk, run, move around (or jump over!)
obstacles and carry objects...

Robotics

... even with pesky humans interfering...

Robotics

... in violent ways!

Playing Games

DeepMind AlphaGo beating the best human Go player!

Diagnosing Diseases

The Unfortunate Reality

https://xkcd.com/1838

However, building machine learning
applications is far from trivial and it is a
craft as much as it is a science.

• It requires large amounts of data,
which has to be collected keeping
the goal of the model in mind.

• It is difficult to decide how to
structure the model from a
mathematical and probabilistic point
of view

• It is difficult to evaluate and
troubleshoot models of any
real-world complexity.

https://xkcd.com/1838

Identify the Variables to Include in the Model

The first step in building a machine learning model is to choose which
variables to include. Which aspects of/entities in the world do we need
the model to represent for the computer to carry out the assigned task?
This is known as feature selection.

• Each aspect of the world or entity is modelled with one random
variable.

• We should use a small enough number of variables because if we
have toomany:
• it is difficult it is to construct the model;
• it is difficult to interpret and troubleshoot it;
• the model requires too much computing power to learn and to run.

• Wemust choose which are the relevant events that make up the
sample space of each variable, again taking care of not having too
many.

Identify the Variables to Include in the Model

For instance, to play a game of Go we need to model each piece using its
position on the board (which provides a regular grid to use for
coordinates) and which player it belongs to.

In robotics applications:

• the position of the robot, and the positions of its hands relative to
its body?

• the size and position of all the objects in the room?

• the size and position of the box to pick up?
All of these can be guessed from the information the robot gets from the
sensors it is equipped with (camera, infrared, radar, etc.). Then there is
the question of how to represent them (coordinates on a grid, and sizes
in increments of 5cm? real numbers?).

In clinical applications we need additional machine learning to even
figure out which variables we should include in our model...

Generative versus Discriminative Models

The second step is choosing which class of machine learning models to
select from.

• Generativemodels: we have a set of variables𝑋1,… ,𝑋𝑁 describing
various components of a complex phenomenon, and we are
interested in modelling that phenomenon in a mechanistic way.
Hence, we want to show how the various parts interact with each
other, and in order to do that we choose to model their joint
probability P(𝑋1,… ,𝑋𝑁).

• Discriminative models: we have one particular variable (say,𝑋1)
that is closely tied with our model task, and a number of other
variables (𝑋2,… ,𝑋𝑁) which we believe can be used to explain it.
We do not care about how the𝑋𝑖 are related to each other, so we
just model P(𝑋1 ∣ 𝑋2,… ,𝑋𝑁).

Generative versus Discriminative Models

Generative Models
Pros

More flexible in terms of what
questions they can answer.

Cons

More complicated to formulate.
Require more data to learn.

Discriminative Models
Pros

Require less data to learn.
Better at prediction than
generative models.

Cons

Exclusively focused on
predicting the variable of
interest.

Model Relationships Between Variables

How do we decide whether there is a relationships between variables? If
we had perfect knowledge we could completely describe the world. But
we never have perfect knowledge:

• in a game of Go, somemoves are more likely than others but we do
not know for sure what more our opponent will pick;

• in robotics we are limited by what the sensors can tell us;

• in clinical applications we are limited by what we can learn from
patients.

Hence we use the language of probability, and we say that two variables
are associated if the occurrence of an event in one variable affects the
probability of an event occurring in another variable. In other words,
they are associated if they are not independent, possibly given other
variables.

An example: the Car Start Problem

“In the morning, my car will not start. The start engine turns, but nothing
happens. The battery is OK. The problemmay be due to dirty spark plugs
or the fuel may be stolen. I look at the fuel meter. It shows 1/2, hence I
expect the spark plugs to be dirty.”

We need to formalise this kind of reasoning into a model that a computer
can understand.

• What made we think of fuel and spark plugs?

• Why did we look at the fuel meter?

• Why had fuel meter reading an impact on our belief that spark plugs
are dirty?

Car Start: Variables and Events

From the problem description, our task is to explain why the car will not
start using a model comprising these four variables:

• Fuel;

• Spark Plugs;

• Start;

• Fuel Meter.

But how do wemodel the sample space in terms of events?

Realistic Pragmatic

Fuel 0%–100% Yes, No
Spark Plugs Work, Fault Work, Fault

Start Yes, No Yes, No
Fuel Meter 0%–100% Empty, Half, Full

Car Start: Which Variables Are Associated?

In a generative model, P(Fuel, Spark Plugs, Fuel Meter, Start) is our
probabilistic model in its most general form. It leads to a table with
2 × 2 × 2 × 3 = 24 probabilities; it would be difficult for us to choose
accurate values for each of them.

We could simply use the chain rule to write the model as

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel Meter, Fuel, Spark Plugs)

P(Fuel Meter ∣ Fuel, Spark Plugs)
P(Fuel ∣ Spark Plugs)P(Spark Plugs)

but that does not change the complexity model, even if it breaks it apart
in smaller pieces.

To actually make it simpler we should ask: do we knowwhich variables
are associated with each other, and which are not?

Car Start: Expert Knowledge of Associations

In our (expert?) knowledge:

• Start is associated with Fuel: from the definition of independence

P(Start = Yes ∣ Fuel = No) = 0 ≠ P(Start = Yes) > 0

so the two are not independent.

• Similarly, Start is associated with Spark Plugs.

• Fuel Meter is associated with Fuel, because the former is a
transformation of the latter. It is also easy to see that

P(Fuel Meter = Full ∣ Fuel = No) = 0 ≠
P(Fuel Meter = Full) > 0.

Car Start: Expert Knowledge of Associations

• Start is not associated with Fuel Meter given Fuel for the same
reason: if we know the amount of Fuel, whether Fuel Meter is
Empty, Half or Full should not alter the probability that Start is
Yes or No.

• Fuel is not associated with Spark Plugs because knowing whether
Fuel is Yes or No should not alter the probability that Spark Plugs
are Work or Fault.

We can take these considerations and use them tomake the model
simpler by removing the variables we do not need from the conditional
probabilities.

Car Start: a Simpler Model

Hence we are left with:

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)P(Fuel Meter ∣ Fuel)

P(Fuel)P(Spark Plugs)

If we represent this model as a graph,
with

• variables as nodes and

• associations as arcs
we get a qualitative view of what our
model looks like.

This representation is the key idea of
Bayesian networks and of many other
classes of machine learning modules.

Fuel

Fuel Meter

Spark Plugs

Start

Car Start: Probabilistic versus Causal Construction

In probability associations are symmetric; the derivation of Bayes’
theoremmakes it really clear that

P(𝑋1 ∣ 𝑋2)P(𝑋2) = P(𝑋1, 𝑋2) = P(𝑋2 ∣ 𝑋1)P(𝑋1).

In order to write the conditional probabilities, we used common sense to
choose the conditioning variables such that they affect the conditioned
variables.

But what does that mean from amodelling point of view? It means we
are giving arcs a causal interpretation and we choose arc directions to go
from cause (nodes) to effect (nodes).

How do we do that?

Car Start: Playing with Arc Directions

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)

P(Fuel Meter ∣ Fuel)P(Fuel)
P(Spark Plugs)

Fuel

Fuel Meter

Spark Plugs

Start

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)

P(Fuel Meter)P(Fuel ∣ Fuel Meter)
P(Spark Plugs)

Fuel

Fuel Meter

Spark Plugs

Start

Car Start: Playing with Arc Directions

The criterion to identify causes and effect is intervention. Consider:

• If we fill the tank with fuel, the fuel meter goes up.

• If we tamper with the fuel meter to make is say Full, the fuel tank
does not magically refill itself.

Hence, Fuel is the cause and Fuel Meter is the effect and the most
intuitive arc direction is Fuel → Fuel Meter.

What the probability P(Fuel Meter ∣ Fuel) tells us is just that if the fuel
meter says Full there probably is fuel in the tank, whereas if the fuel
meter says Empty there may be no fuel in the tank (assuming the fuel
meter works reliably).

Car Start: Learning Association from Data

What if we do not have expert knowledge of associations, so we are stuck
at

P(Start, Fuel Meter, Fuel, Spark Plugs) = ?

It is possible to learn associations from data to select a goodmodel. The
key idea is that:
1. we collect data (that is, sets of values for all the variables in the

model);
2. we take different models and we compute the probability they give

to the data;
3. we choose the model that gives the highest probability to the data,

taking the complexity of the model into consideration.

Car Start: the Conditional Probabilities

Spark Plugs
Work Fault

? ?

Fuel
Yes No

? ?

Fuel Meter
Fuel = Yes Fuel = No

Empty ? ?
Half ? ?
Full ? ?

Start
Spark Plugs = Work

Fuel = Yes Fuel = No

Yes ? ?
No ? ?

Spark Plugs = Fault
Fuel = Yes Fuel = No

Yes ? ?
No ? ?

After we decide that this model is good to go, we need to fill in the values
of all the conditional probabilities that are implied by the model.

The number of these probabilities gives the complexity of the model
(2 + 2 + 6 + 8 = 18 < 24).

Car Start: the Conditional Probabilities

Again, we have two ways of doing that:

• ask someone with expert knowledge who can tell us which values to
fill in;

• estimate the (conditional) probabilities from the data.

Starting from expert knowledge, we can create the probability and
conditional probability tables as follows.
1. Store the events in the sample space for each variable.

Fuel.lvl = c("Yes", "No")
Spark.Plugs.lvl = c("Work", "Fault")
Fuel.Meter.lvl = c("Full", "Half", "Empty")
Start.lvl = c("Yes", "No")

Car Start: Expert Probabilities in R

2. Create the probability tables labelling rows and columns for easy
reference.

Fuel.probs = array(c(0.98, 0.02), dim = 2, dimnames = list(Fuel = Fuel.lvl))
Spark.Plugs.probs = array(c(0.96, 0.04), dim = 2,

dimnames = list(Spark.Plugs = Spark.Plugs.lvl))
Fuel.Meter.probs = array(c(0.39, 0.60, 0.01, 0.01, 0.01, 0.98), dim = c(3, 2),

dimnames = list(Fuel.Meter = Fuel.Meter.lvl,
Fuel = Fuel.lvl))

Start.probs = array(c(0.99, 0.01, 0, 1, 0.01, 0.99, 0, 1), dim = c(2, 2, 2),
dimnames = list(Start = Start.lvl, Fuel = Fuel.lvl,

Spark.Plugs = Spark.Plugs.lvl))

3. Store all probability tables together in a list.

expert.probabilities = list(
Fuel = Fuel.probs,
Spark.Plugs = Spark.Plugs.probs,
Fuel.Meter = Fuel.Meter.probs,
Start = Start.probs

)

Car Start: Expert Probabilities in R

The end result is this collection of expert probabilities, organised in
tables:

expert.probabilities$Fuel

Fuel
Yes No
0.98 0.02

expert.probabilities$Spark.Plugs

Spark.Plugs
Work Fault
0.96 0.04

expert.probabilities$Fuel.Meter

Fuel
Fuel.Meter Yes No

Full 0.39 0.01
Half 0.60 0.01
Empty 0.01 0.98

expert.probabilities$Start

, , Spark.Plugs = Work

Fuel
Start Yes No

Yes 0.99 0
No 0.01 1

, , Spark.Plugs = Fault

Fuel
Start Yes No

Yes 0.01 0
No 0.99 1

How can we get the same thing from data, without using an expert?

Car Start: Probabilities from Data in R

Suppose we collect a number of data points for the four variables in the
model.

dim(training.set)

[1] 500 4

head(training.set)

Fuel Fuel.Meter Spark.Plugs Start
1 Yes Full Work Yes
2 Yes Half Work Yes
3 Yes Full Work Yes
4 Yes Half Work Yes
5 Yes Half Work Yes
6 Yes Half Work Yes

We can use these data to compute the frequentist probabilities we need
to fill in the model using the corresponding relative frequencies.

Car Start: Probabilities from Data in R

Again, we can compute the absolute frequencies (*.counts) and then
the relative frequencies (*.probs) for each variable, making sure we get
the right conditional probabilities from prop.table().

Fuel.counts = table(training.set[, "Fuel"])
Fuel.probs = prop.table(Fuel.counts)
Spark.Plugs.counts = table(training.set[, "Spark.Plugs"])
Spark.Plugs.probs = prop.table(Spark.Plugs.counts)
Fuel.Meter.counts = table(training.set[, c("Fuel.Meter", "Fuel")])
Fuel.Meter.probs = prop.table(Fuel.Meter.counts, margin = 2)
Start.counts = table(training.set[, c("Start", "Fuel", "Spark.Plugs")])
Start.probs = prop.table(Start.counts, margin = 2:3)

We can then organise them in a list as we did for the expert probabilities.

probability.tables = list(
Fuel = Fuel.probs,
Spark.Plugs = Spark.Plugs.probs,
Fuel.Meter = Fuel.Meter.probs,
Start = Start.probs

)

Car Start: Probabilities from Data in R

The end result is this collection of frequentist probabilities, organised in
the same way as the expert probabilities:
probability.tables$Fuel

Yes No
0.988 0.012

probability.tables$Spark.Plugs

Work Fault
0.972 0.028

probability.tables$Fuel.Meter

Fuel
Fuel.Meter Yes No

Full 0.37854 0.00000
Half 0.61538 0.00000
Empty 0.00607 1.00000

probability.tables$Start

, , Spark.Plugs = Work

Fuel
Start Yes No

Yes 0.9833 0.0000
No 0.0167 1.0000

, , Spark.Plugs = Fault

Fuel
Start Yes No

Yes 0.0000
No 1.0000

Each set of probabilities gives a different model for the car start problem.

Spot the Difference

• Expert probabilities are “nicer” in the sense that they are usually
reasonably round numbers with 2-3 decimal places.

• Expert probabilities give probabilities greater than zero to events that
are really rare, because the experts know these events are not
impossible. (An example: Fuel Meter = Full when Fuel = No; fuel
meters are very reliable but they definitely can break.)

• Frequentist probabilities are limited by the data we can collect; we
may not actually observe rare events and then they get a probability
of exactly zero. But they are not impossible!

• For this reason, frequentist probabilities are bad at representing small
(≈ 0) and large (≈ 1) probabilities because they have a granularity of
1/nrow(training.set) (here 1/500).

• And if nrow(training.set) is small they are bad at representing any
probability.

Training and Validation Data Sets

In machine learning we assess howwell a model works by looking at how
accurate it is in predicting new observations. To do this we need a data
set that has not been previously used to define the model (such as
computing frequentist probabilities); this second data set is called the
validation data set. It is “new” in the sense that the model has hot seen
these data before.

In contrast, the data set we use to define the model is called the training
data set, because it is used to train the model.

head(validation.set)

Fuel Fuel.Meter Spark.Plugs Start
1 No Empty Work No
2 Yes Full Work Yes
3 Yes Half Work Yes
4 Yes Half Work Yes
5 Yes Half Work Yes
6 Yes Full Work Yes

Probability of the Validation Data Set

If we take the first data point from the validation set, we have complete
set of values for all the variables and we can feed those values to the
model to compute their joint probability.

new.data = validation.set[1,]
probability.tables$Fuel[new.data$Fuel]

No
0.012

probability.tables$Spark.Plugs[new.data$Spark.Plugs]

Work
0.972

probability.tables$Fuel.Meter[new.data$Fuel.Meter, new.data$Fuel]

[1] 1

probability.tables$Start[new.data$Start, new.data$Fuel, new.data$Spark.Plugs]

[1] 1

So, the probability of that data point is 0.0120.97211 ≈ 0.012.

Probability of the Validation Data Set

If we iterate over all the validation set, and wemultiply all the resulting
probabilities together we obtain its predictive probability.

validation.set.probability = 1
for (i in seq(nrow(validation.set))) {

val = validation.set[i,]
new.prob = probability.tables$Fuel[val$Fuel] *

probability.tables$Spark.Plugs[val$Spark.Plugs] *
probability.tables$Fuel.Meter[val$Fuel.Meter, val$Fuel] *
probability.tables$Start[val$Start, val$Fuel, val$Spark.Plugs]

validation.set.probability = validation.set.probability * new.prob

}#FOR
as.numeric(validation.set.probability)

[1] 7.1e-44

Why dowe care about having amodel with a good predictive probability?

Why the Probability of the Validation Data Set

The probability of the validation test is a measure of predictive accuracy,
that is, the ability of themodel to predict new events. The reason why we
want a model that maximises it is as follows.

1. The four variables in the model can take 24 combinations of values.

2. Some combinations of their values will have higher probabilities
(according to the model) than others.

3. In the validation sets, some combinations of values will appear
more frequently than others.

4. If the machine learningmodel is a good workingmodel of the world,
it should assign high probability to combinations of values that
appear more often.

5. Hence, we want a model that gives a high probability to the
validation set as a whole.

The Log-Probability is What You Actually Want

Predictive accuracy is usually measured on a log-scale; on its natural
scale it becomes too small very quickly when the validation set or the
number of variables grow. It’s already≈ 10−43 for this simple model!

validation.log.probability = 0
for (i in seq(nrow(validation.set))) {

val = validation.set[i,]
new.prob = probability.tables$Fuel[val$Fuel] *

probability.tables$Spark.Plugs[val$Spark.Plugs] *
probability.tables$Fuel.Meter[val$Fuel.Meter, val$Fuel] *
probability.tables$Start[val$Start, val$Fuel, val$Spark.Plugs]

validation.log.probability = validation.log.probability + log(new.prob)

}#FOR
as.numeric(validation.log.probability)

[1] -99.4

(The model with the expert probabilities gets -99.298, which is about the
same.)

Car Start: Predicting Start

Sometimes wemay also be interested in the accuracy of predicting just
one variable given some other variables. For instance, we would like to
predict Start from the other variables.

errors = 0
for (i in seq(nrow(validation.set))) {

val = validation.set[i,]
base.prob = probability.tables$Fuel[val$Fuel] *

probability.tables$Spark.Plugs[val$Spark.Plugs] *
probability.tables$Fuel.Meter[val$Fuel.Meter, val$Fuel]

Yes.prob = base.prob *
probability.tables$Start["Yes", val$Fuel, val$Spark.Plugs]

No.prob = base.prob *
probability.tables$Start["No", val$Fuel, val$Spark.Plugs]

if (ifelse(Yes.prob > No.prob, "Yes", "No") != val$Start)
errors = errors + 1

}#FOR
errors / nrow(validation.set)

[1] 0.01

Car Start: Interrogating the Model

Amore general way of using a model is to interrogate it: we have some
evidence on some of the variables (that is, we assume we know their
values), and we would like to know the the probability of some event.

For instance: say that Fuel Meter = Half. How does P(Start = Yes)
change after we introduce this evidence in the model?

Predicting Start from all the other variables is a particular case in which
we have evidence on all the other variables.

Car Start: the Exhaustive (Dumb) Way

Using probability axiom #2, we can write

P(Start = Yes) =
P(Start = Yes, Fuel = Yes) + P(Start = Yes, Fuel = No)

and then, recursively,

P(Start = Yes, Fuel = Yes) =
P(Start = Yes, Fuel = Yes, Spark.Plugs = Work)+

P(Start = Yes, Fuel = Yes, Spark.Plugs = Fault)

P(Start = Yes, Fuel = Yes, Spark.Plugs = Work)
= P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Full)+

P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Half)+
P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Empty)

Car Start: the Exhaustive (Dumb) Way

In practice this means that, for small models, we can just go through all
combinations of values of the other variables.

yes.prob = 0
for (FL in Fuel.lvl)
for (SP in Spark.Plugs.lvl)

for (FM in Fuel.Meter.lvl) {

yes.prob = yes.prob +
expert.probabilities$Fuel[FL] *
expert.probabilities$Spark.Plugs[SP] *
expert.probabilities$Fuel.Meter[FM, FL] *
expert.probabilities$Start["Yes", FL, SP]

}#FOR
as.numeric(yes.prob)

[1] 0.932

So P(Start = Yes) = 0.932, and P(Start = No) = 1 − 0.932 = 0.068.

Car Start: the Exhaustive (Dumb) Way

half.prob = yes.and.half.prob = 0
for (FL in Fuel.lvl)
for (SP in Spark.Plugs.lvl) {

yes.and.half.prob = yes.and.half.prob + expert.probabilities$Fuel[FL] *
expert.probabilities$Spark.Plugs[SP] *
expert.probabilities$Fuel.Meter["Half", FL] *
expert.probabilities$Start["Yes", FL, SP]

}#FOR
for (FL in Fuel.lvl)
for (SP in Spark.Plugs.lvl)

for (ST in Start.lvl) {

half.prob = half.prob + expert.probabilities$Fuel[FL] *
expert.probabilities$Spark.Plugs[SP] *
expert.probabilities$Fuel.Meter["Half", FL] *
expert.probabilities$Start[ST, FL, SP]

}#FOR
as.numeric(yes.and.half.prob) / as.numeric(half.prob)

[1] 0.95

But is there a more efficient way of doing the same thing?

Car Start: the Principled (Probabilistic) Way

P(Start = Yes, Fuel Meter = Half,
Fuel, Spark Plugs) =

= P(Start = Yes ∣ Fuel, Spark Plugs)
P(Fuel Meter = Half ∣ Fuel)
P(Fuel)P(Spark Plugs)

Fuel

Fuel Meter
 = "Half"

Spark Plugs

Start = "Yes"

P(Start = Yes, Fuel Meter = Half,
Fuel, Spark Plugs)

= P(Start ∣ Fuel, Spark Plugs)
P(Fuel ∣ Fuel Meter = Half)
P(Fuel.Meter = Half)

����P(Fuel)
����P(Fuel)P(Spark Plugs)

Fuel

Fuel Meter
 = "Half"

Spark Plugs

Start = "Yes"

Car Start: the Principled (Probabilistic) Way

P(Start = Yes, Fuel, Spark Plugs ∣
Fuel Meter = Half)

= P(Start ∣ Fuel, Spark Plugs)
P(Fuel ∣ Fuel Meter = Half)

�����������P(Fuel.Meter = Half)
P(Fuel.Meter = Half)
P(Spark Plugs)

Fuel when
Fuel Meter

 = "Half"
Spark Plugs

Start = "Yes"

This leaves three variables, of which Start is fixed to Yes: hence we have
to consider P(Start = Yes) under four scenarios:

Fuel = Yes ∣ Fuel Meter = Half, Spark Plugs = Work
Fuel = Yes ∣ Fuel Meter = Half, Spark Plugs = Fault
Fuel = No ∣ Fuel Meter = Half, Spark Plugs = Work
Fuel = No ∣ Fuel Meter = Half, Spark Plugs = Fault

and sum the corresponding P(Start = Yes ∣ scenario)P(scenario).

Summary and Remarks

• Machine learning aims to make computer systems able to learn from
and carry out tasks in the real world.

• Machine learning models represent a model of the world in a form
useful to a computer, and use the language of probability to represent
uncertainty.

• The focus of machine learning models is prediction, and by extension
probabilistic reasoning and inference, so that the computer system
can use the models to decide how to react to its environment.

• Generative models are better for reasoning, discriminative models are
better for prediction.

Thanks!

Any questions?

