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Introduction

Learning a Bayesian network B = (𝒢, Θ) from a data set 𝒟 involves:

P(B ∣ 𝒟) = P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

Assuming complete data, we can decompose P(𝒢 ∣ 𝒟) into

P(𝒢 ∣ 𝒟) ∝ P(𝒢) P(𝒟 ∣ 𝒢) = P(𝒢) ∫ P(𝒟 ∣ 𝒢, Θ) P(Θ ∣ 𝒢)𝑑Θ

where P(𝒢) is the prior over the space of the DAGs and P(𝒟 ∣ 𝒢) is the
marginal likelihood (ML) of the data; and then

P(𝒟 ∣ 𝒢) =
𝑁

∏
𝑖=1

[∫ P(𝑋𝑖 ∣ Π𝑋𝑖
, Θ𝑋𝑖

) P(Θ𝑋𝑖
∣ Π𝑋𝑖

)𝑑Θ𝑋𝑖
] .

whereΠ𝑋𝑖
are the parents of𝑋𝑖 in𝒢. BIC [9] is often used to approximate

P(𝒟 ∣ 𝒢). Denote themwith 𝑆ML(𝒢 ∣ 𝒟) and 𝑆BIC(𝒢 ∣ 𝒟) respectively.



Learning a Bayesian Network from Incomplete Data

When the data are incomplete, 𝑆ML(𝒢 ∣ 𝒟) and 𝑆BIC(𝒢 ∣ 𝒟) are no
longer decomposable because wemust integrate out missing values.
We can use Expectation-Maximisation (EM) [4]:

• in the E-step, we compute the expected sufficient statistics
conditional on the observed data using belief propagation [7, 8, 10];

• in the M-step, we use complete-data learning methods with the
expected sufficient statistics.

There are two ways of applying EM to structure learning:

• We can apply EM separately to each candidate DAG to be scored, as
in the variational-Bayes EM [2].

• We can embed structure learning in the M-step, estimating the
expected sufficient statistics using the current best DAG. This
approach is called Structural EM [5, 6].

The latter is computationally feasible for medium and large problems,
but still computationally demanding.



The Node-Averaged Likelihood

Balov [1] proposed amore scalable approach for discrete BNs called
Node-Average Likelihood (NAL). NAL computes each term using the
𝒟(𝑖) ⊆ 𝒟 locally-complete data for which 𝑋𝑖, Π𝑋𝑖

are observed:

̄ℓ(𝑋𝑖 ∣ Π𝑋𝑖
, Θ̂𝑋𝑖

) =
1

|𝒟(𝑖)|
∑
𝒟(𝑖)

log P(𝑋𝑖 ∣ Π𝑋𝑖
, Θ̂𝑋𝑖

) → E [ℓ(𝑋𝑖 ∣ Π𝑋𝑖
)] ,

which Balov used to define

𝑆PL(𝒢 ∣ 𝒟) = ̄ℓ(𝒢, Θ ∣ 𝒟) − 𝜆𝑛ℎ(𝒢), 𝜆𝑛 ∈ ℝ+, ℎ ∶ 𝔾 → ℝ+

and structure learning as �̂� = argmax𝒢∈𝔾 𝑆PL(𝒢 ∣ 𝒟).

Balov proved both identifiability and consistency of structure learning
when using 𝑆PL(𝒢 ∣ 𝒟) for discrete BNs. We will now prove both
properties hold more generally, and in particular that they hold for
conditional Gaussian BNs (CGBNs).



Identifiability (General)

Denote the true DAG as𝒢0 and the equivalence class it belongs to as [𝒢0].

Under MCAR, we have:
1. max𝒢∈𝔾

̄ℓ(𝒢, Θ) = ̄ℓ(𝒢0, Θ0).

2. If ̄ℓ(𝒢, Θ) = ̄ℓ(𝒢0, Θ0), then P𝒢(X) = P𝒢0
(X).

3. If 𝒢0 ⊆ 𝒢, then ̄ℓ(𝒢, Θ) = ̄ℓ(𝒢0, Θ0).

Identifiability follows from the above.

[𝒢0] is identifiable under MCAR, that is

𝒢0 ≅ min {𝒢∗ ∈ 𝔾 ∶ ̄ℓ(𝒢∗, Θ∗) = max
𝒢∈𝔾

̄ℓ(𝒢, Θ)} .



Consistency (for CGBNs)

From [1], the sufficient conditions for consistency are:
1. If 𝒢0 ⊆ 𝒢1, 𝒢0 ⊈ 𝒢2, lim𝑛→∞ P (𝑆PL(𝒢1 ∣ 𝒟) > 𝑆PL(𝒢2 ∣ 𝒟)) = 1.

2. If 𝒢0 ⊆ 𝒢1, 𝒢1 ⊂ 𝒢2, lim𝑛→∞ P (𝑆PL(𝒢1 ∣ 𝒟) > 𝑆PL(𝒢2 ∣ 𝒟)) = 1.

3. ∃ 𝒢 ∶ Π(𝒢0)
𝑋𝑖

⊂ Π(𝒢)
𝑋𝑖

, Π(𝒢)
𝑋𝑗

= Π(𝒢0)
𝑋𝑗

, Π(𝒢)
𝑋𝑖

∖ Π(𝒢0)
𝑋𝑖

are neither always
observed nor never observed (thus 𝒢0 must not be a maximal DAG).

Under some regularity conditions, we showwhen they hold for CGBNs:

Let𝒢0 be identifiable,𝜆𝑛 → 0 as𝑛 → ∞, and assumeMLEs andNAL’s
Hessian exist finite. Then as 𝑛 → ∞:
1. If 𝑛𝜆𝑛 → ∞, �̂� is consistent.
2. Under MCAR and VAR(NAL) < ∞, if

√
𝑛𝜆𝑛 → ∞, �̂� is

consistent.
3. Under the above and condition 3, if lim inf𝑛→∞

√
𝑛𝜆𝑛 < ∞, then �̂� is

not consistent.



Conclusions

• In 𝑆BIC(𝒢 ∣ 𝒟), 𝑛𝜆𝑛 = log(𝑛)/2 → ∞ and√
𝑛𝜆𝑛 = log(𝑛)/(2

√
𝑛) → 0, so BIC satisfies the first condition but

not the second in the main result. Hence BIC is consistent for
complete data but not for incomplete data.

• The equivalent 𝑆AIC(𝒢 ∣ 𝒟) does not satisfy either condition which
confirms and extends the results in [3]. Hence AIC is not consistent for
either complete or incomplete data.

• How to choose 𝜆𝑛 is an open problem.

• Proving results is complicated because
• 𝑆PL(𝒢 ∣ 𝒟) is fitted on different subsets of 𝒟 for different 𝒢, so models
are not nested;

• variables have heterogeneous distributions;
• DAGs that may represent misspecified models [11] are not representable
in terms of 𝒢0 so minimising Kullback-Leibler distances to obtain MLEs
does necessarily make them vanish as 𝑛 → ∞.



Thanks!

Any questions?



References I

Tag N. Balov.
Consistent Model Selection of Discrete Bayesian Networks from Incomplete Data.
Electronic Journal of Statistics, 7:1047–1077, 2013.

Tag M. Beal and Z. Ghahramani.
The Variational Bayesian EM Algorithm for Incomplete Data: with Application to Scoring
Graphical Model Structures.
Bayesian Statistics, 7:453–464, 2003.

Tag H. Bozdogan.
Model Selection and Akaike’s Information Criterion (AIC): The General Theory and its Analytical
Extensions.
Psychometrika, 52(3):345–370, 1987.

Tag A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society, Series B, pages 1–38, 1977.

Tag N. Friedman.
Learning Belief Networks in the Presence of Missing Values and Hidden Variables.
In ICML, pages 125–133, 1997.

Tag N. Friedman.
The Bayesian Structural EM Algorithm.
In UAI, pages 129–138, 1998.



References II

Tag S. L. Lauritzen.
The EM algorithm for Graphical Association Models with Missing Data.
Computational Statistics & Data Analysis, 19(2):191–201, 1995.

Tag J. Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., 1988.

Tag G. Schwarz.
Estimating the Dimension of a Model.
The Annals of Statistics, 6(2):461–464, 1978.

Tag G. Shafer and P. P. Shenoy.
Probability propagation.
Annals of Mathematics and Artificial Intelligence, 2(1-4):327–351, 1990.

Tag H. White.
Maximum Likelihood Estimation of Misspecified Models.
Econometrica, 50(1):1–25, 1982.


