IDENTIFIABILITY AND CONSISTENCY OF BAYESIAN NETWORK STRUCTURE LEARNING FROM INCOMPLETE DATA

¹ Tjebbe Bodewes tjebbe.bodewes@linacre.ox.ac.uk

> ² Marco Scutari scutari@idsia.ch

¹ Zivver & Department of Statistics, University of Oxford

² Dalle Molle Institute for Artificial Intelligence (IDSIA)

September 24, 2020

Learning a Bayesian network $\mathbf{B} = (\mathcal{G}, \Theta)$ from a data set \mathcal{D} involves:

Assuming complete data, we can decompose $P(\mathcal{G} \mid \mathcal{D})$ into

$$\mathbf{P}(\mathcal{G} \mid \mathcal{D}) \propto \mathbf{P}(\mathcal{G}) \, \mathbf{P}(\mathcal{D} \mid \mathcal{G}) = \mathbf{P}(\mathcal{G}) \int \mathbf{P}(\mathcal{D} \mid \mathcal{G}, \Theta) \, \mathbf{P}(\Theta \mid \mathcal{G}) d\Theta$$

where $P(\mathcal{G})$ is the prior over the space of the DAGs and $P(\mathcal{D} \mid \mathcal{G})$ is the marginal likelihood (ML) of the data; and then

$$\mathbf{P}(\mathcal{D} \mid \mathcal{G}) = \prod_{i=1}^{N} \left[\int \mathbf{P}(X_i \mid \Pi_{X_i}, \Theta_{X_i}) \, \mathbf{P}(\Theta_{X_i} \mid \Pi_{X_i}) d\Theta_{X_i} \right].$$

where Π_{X_i} are the parents of X_i in \mathcal{G} . BIC [9] is often used to approximate $P(\mathcal{D} \mid \mathcal{G})$. Denote them with $S_{\mathrm{ML}}(\mathcal{G} \mid \mathcal{D})$ and $S_{\mathrm{BIC}}(\mathcal{G} \mid \mathcal{D})$ respectively.

When the data are incomplete, $S_{\rm ML}(\mathcal{G} \mid \mathcal{D})$ and $S_{\rm BIC}(\mathcal{G} \mid \mathcal{D})$ are no longer decomposable because we must integrate out missing values. We can use Expectation-Maximisation (EM) [4]:

- in the E-step, we compute the expected sufficient statistics conditional on the observed data using belief propagation [7, 8, 10];
- in the M-step, we use complete-data learning methods with the expected sufficient statistics.

There are two ways of applying EM to structure learning:

- We can apply EM separately to each candidate DAG to be scored, as in the variational-Bayes EM [2].
- We can embed structure learning in the M-step, estimating the expected sufficient statistics using the current best DAG. This approach is called Structural EM [5, 6].

The latter is computationally feasible for medium and large problems, but still computationally demanding.

Balov [1] proposed a more scalable approach for discrete BNs called Node-Average Likelihood (NAL). NAL computes each term using the $\mathcal{D}_{(i)} \subseteq \mathcal{D}$ locally-complete data for which X_i, Π_{X_i} are observed:

$$\bar{\ell}(X_i \mid \Pi_{X_i}, \widehat{\Theta}_{X_i}) = \frac{1}{|\mathcal{D}_{(i)}|} \sum_{\mathcal{D}_{(i)}} \log \mathcal{P}(X_i \mid \Pi_{X_i}, \widehat{\Theta}_{X_i}) \to \mathcal{E}\left[\ell(X_i \mid \Pi_{X_i})\right],$$

which Balov used to define

$$S_{\mathrm{PL}}(\mathcal{G} \mid \mathcal{D}) = \bar{\ell}(\mathcal{G}, \Theta \mid \mathcal{D}) - \lambda_n h(\mathcal{G}), \quad \ \lambda_n \in \mathbb{R}^+, h: \mathbb{G} \to \mathbb{R}^+$$

and structure learning as $\widehat{\mathcal{G}} = \operatorname{argmax}_{\mathcal{G} \in \mathbb{G}} S_{\operatorname{PL}}(\mathcal{G} \mid \mathcal{D}).$

Balov proved both identifiability and consistency of structure learning when using $S_{\rm PL}(\mathcal{G} \mid \mathcal{D})$ for discrete BNs. We will now prove both properties hold more generally, and in particular that they hold for conditional Gaussian BNs (CGBNs).

Denote the true DAG as \mathcal{G}_0 and the equivalence class it belongs to as $[\mathcal{G}_0]$.

Under MCAR, we have:

1.
$$\max_{\mathcal{G}\in\mathbb{G}} \overline{\ell}(\mathcal{G},\Theta) = \overline{\ell}(\mathcal{G}_0,\Theta_0).$$

2. If
$$\bar{\ell}(\mathcal{G}, \Theta) = \bar{\ell}(\mathcal{G}_0, \Theta_0)$$
, then $P_{\mathcal{G}}(\mathbf{X}) = P_{\mathcal{G}_0}(\mathbf{X})$.

3. If
$$\mathcal{G}_0 \subseteq \mathcal{G}$$
, then $\overline{\ell}(\mathcal{G}, \Theta) = \overline{\ell}(\mathcal{G}_0, \Theta_0)$.

Identifiability follows from the above.

$$[\mathcal{G}_0]$$
 is identifiable under MCAR, that is
$$\mathcal{G}_0 \cong \min \left\{ \mathcal{G}_* \in \mathbb{G} : \bar{\ell}(\mathcal{G}_*, \Theta_*) = \max_{\mathcal{G} \in \mathbb{G}} \bar{\ell}(\mathcal{G}, \Theta) \right\}.$$

CONSISTENCY (FOR CGBNs)

From [1], the sufficient conditions for consistency are:

- $\text{ 1. If } \mathcal{G}_0 \subseteq \mathcal{G}_1, \mathcal{G}_0 \not\subseteq \mathcal{G}_2, \lim_{n \to \infty} \mathbf{P}\left(S_{\mathrm{PL}}(\mathcal{G}_1 \mid \mathcal{D}) > S_{\mathrm{PL}}(\mathcal{G}_2 \mid \mathcal{D})\right) = 1.$
- $\text{2. If } \mathcal{G}_0 \subseteq \mathcal{G}_1, \mathcal{G}_1 \subset \mathcal{G}_2, \lim_{n \to \infty} \mathbf{P}\left(S_{\mathrm{PL}}(\mathcal{G}_1 \mid \mathcal{D}) > S_{\mathrm{PL}}(\mathcal{G}_2 \mid \mathcal{D})\right) = 1.$

3. $\exists \mathcal{G} : \Pi_{X_i}^{(\mathcal{G}_0)} \subset \Pi_{X_j}^{(\mathcal{G})}, \Pi_{X_j}^{(\mathcal{G})} = \Pi_{X_j}^{(\mathcal{G}_0)}, \Pi_{X_i}^{(\mathcal{G})} \setminus \Pi_{X_i}^{(\mathcal{G}_0)}$ are neither always observed nor never observed (thus \mathcal{G}_0 must not be a maximal DAG). Under some regularity conditions, we show when they hold for CGBNs:

Let \mathcal{G}_0 be identifiable, $\lambda_n \to 0$ as $n \to \infty$, and assume MLEs and NAL's Hessian exist finite. Then as $n \to \infty$:

- 1. If $n\lambda_n \to \infty$, $\widehat{\mathcal{G}}$ is consistent.
- 2. Under MCAR and $VAR(NAL) < \infty$, if $\sqrt{n}\lambda_n \to \infty$, $\widehat{\mathcal{G}}$ is consistent.
- 3. Under the above and condition 3, if $\liminf_{n\to\infty} \sqrt{n}\lambda_n < \infty$, then $\widehat{\mathcal{G}}$ is not consistent.

- In $S_{\mathrm{BIC}}(\mathcal{G} \mid \mathcal{D})$, $n\lambda_n = \log(n)/2 \to \infty$ and $\sqrt{n}\lambda_n = \log(n)/(2\sqrt{n}) \to 0$, so BIC satisfies the first condition but not the second in the main result. Hence BIC is consistent for complete data but not for incomplete data.
- The equivalent $S_{AIC}(\mathcal{G} \mid \mathcal{D})$ does not satisfy either condition which confirms and extends the results in [3]. Hence AIC is not consistent for either complete or incomplete data.
- How to choose λ_n is an open problem.
- Proving results is complicated because
 - $S_{\mathrm{PL}}(\mathcal{G}\mid\mathcal{D})$ is fitted on different subsets of \mathcal{D} for different \mathcal{G} , so models are not nested;
 - variables have heterogeneous distributions;
 - DAGs that may represent misspecified models [11] are not representable in terms of \mathcal{G}_0 so minimising Kullback-Leibler distances to obtain MLEs does necessarily make them vanish as $n \to \infty$.

THANKS!

ANY QUESTIONS?

REFERENCES I

N. Balov.

Consistent Model Selection of Discrete Bayesian Networks from Incomplete Data. *Electronic Journal of Statistics*, 7:1047–1077, 2013.

 M. Beal and Z. Ghahramani.
The Variational Bayesian EM Algorithm for Incomplete Data: with Application to Scoring Graphical Model Structures.
Bayesian Statistics, 7:453–464, 2003.

 H. Bozdogan.
Model Selection and Akaike's Information Criterion (AIC): The General Theory and its Analytical Extensions.
Psychometrika, 52(3):345–370, 1987.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, pages 1–38, 1977.

N. Friedman.

Learning Belief Networks in the Presence of Missing Values and Hidden Variables. In *ICML*, pages 125–133, 1997.

N. Friedman.

The Bayesian Structural EM Algorithm. In *UAI*, pages 129–138, 1998.

S. L. Lauritzen.

The EM algorithm for Graphical Association Models with Missing Data. *Computational Statistics & Data Analysis*, 19(2):191–201, 1995.

J. Pearl.

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., 1988.

🕨 G. Schwarz.

Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464, 1978.

G. Shafer and P. P. Shenoy.

Probability propagation. Annals of Mathematics and Artificial Intelligence, 2(1-4):327–351, 1990.

H. White.

Maximum Likelihood Estimation of Misspecified Models. *Econometrica*, 50(1):1–25, 1982.