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Bayesian networks: definitions

A Bayesian network B = (G, P) is a graphical model composed by:

e a directed acyclic graph G = (U, A). Each node represents a
random variable X € U and the arcs in A specify the
conditional dependence structure of U.

e a global probability distribution P (U) defined over the
variable set U. It can be factorized into a set of local
probability distributions of the form

P(U)= [] P(xi|l,),
X;€U

where Ily, is the set of the parents of the node Xj.
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Learning Bayesian networks

Model selection (usually called learning) of a Bayesian network is
also performed in two steps:

1. structure learning: finding a graph structure that encodes the
conditional independence (Cl) relationships in the data.

2. parameter learning: fitting the parameters of each local
distribution given the graph structure selected in the previous
step.

Most modern structure learning algorithms use conditional
independence tests to find out Cl constraints from data
(constraint-based algorithms), sometimes together with
goodness-of-fit scores (hybrid algorithms).
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Parametric vs Permutation tests for structure learning

Proofs of correctness of structure learning algorithms assume that
conditional independence tests do not incur in type | or type Il
errors [6, 8, 10]. This makes the use of parametric tests
problematic because:

e most of them are asymptotic or approximate; but they are
often applied in situations where convergence is problematic
(high-dimensional data, "small n, large p" settings).

e they require distributional assumptions which are difficult to
justify and rarely satisfied by real-world data.

Permutation tests do not present any of these limitations [7], and
therefore result in a more effective model selection.
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Model validation: experimental setting

The impact of permutation tests on Bayesian network learning has
been evaluated for the Max-Min Hill Climbing (MMHC) hybrid
algorithm [9], which is one of the best performers up to date and
has been extensively tested over a wide variety of data sets.

In particular:

e data sets have been generated from the ALARM network [2],
which is often used a benchmark for testing structure learning
algorithms. ALARM contains 37 dicrete nodes, for a total of
509 parameters.

e the G? log-likelihood ratio test [1] have been used as a Cl
test, with an a = 0.05 threshold. G? is also equivalent to the
mutual information Cl test up to a constant [5].
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Model validation: goodness of fit

Goodness of fit has been measured with the following scores:

e the Bayesian Information Criterion (BIC) [4], which is a
penalized likelihood score.

e the Bayesian Dirichlet equivalent (BDe) score [3], which is
posterior Dirichlet distribution based on a uniform prior.

e the Structural Hamming Distance (SHD) score [9], which is
an extension of Hamming's distance measure for undirected
graphs.

Each score has been computed on 4 sets of pairs of Bayesian
networks learned from samples of different sizes (50 networks for
each size) using parametric and permutation implementations of
the G2 Cl test.
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Effect on the BIC score of fitted networks

0.10 4 -

'
' Q
0.05 4 i [}
.\ ! (¢}

' R
T : !
! !
'

Relative BIC improvement

T I
0.00 . ' L

,,,,,,,,,

200 500 1000 5000
sample size

Marco Scutari and Adriana Brogini University of Padova



Effect on the BDe score of fitted networks
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Effect on the BIC score, predictive goodness-of-fit
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Effect on the BDe score, predictive goodness-of-fit
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Effect on Structural Hamming Distance (SHD)
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Conclusions

e The correctness of structure learning algorithms depends
heavily on the performance of the underlying CI tests.

e Parametric tests are problematic in many real-world settings
in which Bayesian networks are used ("small n, large p").

e Model selection based on permutation tests consistently
produces networks with higher BIC and BDEu scores for both
small and moderately large sample sizes.
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