
Multiple Quantitative Trait Analysis in Statistical
Genetics with Bayesian Networks

Marco Scutari

m.scutari@ucl.ac.uk
Genetics Institute

University College London

April 9, 2014

Marco Scutari University College London, NIAB

mailto:m.scutari@ucl.ac.uk


Gaussian BNs, between Classic and Modern Statistics

Bayesian networks (BNs) represent a flexible tool for quantitative [9],
qualitative and causal [13] reasoning, and are one of the building blocks
used to specify complex models and Monte Carlo inference techniques in
machine learning [11].

However, BNs can also be approached from a perspective that is much
closer to that of classic multivariate statistics by considering Gaussian
Bayesian networks (GBNs):

• they allow the derivation of many closed form results because of the
favourable properties of the multivariate normal distribution;

• they are related to such classic techniques as linear regression and
covariance matrix decomposition;

• and they can be used to extend these techniques beyond their
original scopes and definitions.

They have widespread applications in life sciences [12] and, as mentioned
by Jean-Baptiste, in the upcoming [5, 17]
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Gaussian Bayesian Networks (GBNs)

GBNs use a DAG G to represent the dependence structure of the
multivariate distribution of X = {X1, . . . Xp} under the following
assumptions [9]:

1. X has a multivariate normal distribution; and

2. dependencies between the Xis are linear.

Under these assumptions COV(X) = Σ is a sufficient statistics for the
GBN and:

1. if Xi and Xj are graphically separated in G (d-separation, [9]), then
Ωij = (Σ−1)ij = 0; and

2. the local distribution associated with each Xi is a linear regression
on the parents ΠXi

of Xi, i.e.:

Xi = µXi +Xjβj + . . .+Xkβk + εi, εi ∼ N(0, σ2
i ).

Note that βj = −Ωij/Ωii in the above [3].
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GBNs in Genetics and GBLUP

The baseline model for association and prediction in statistical genetics is
the linear mixed model [4], rebranded as GBLUP (Genetic BLUP, [10]).
It is typically fitted on a single phenotypic trait Xt at a time using a large
number S of genetic markers XS = {Xs1 , . . . , XsS} (e.g. SNPs, in the
form of 0/1/2 allele counts) from a genome-wide profile:

Xt = µ+ ZSu + ε, u ∼ N(0,Kσ2
u)

where µ is the population mean, ZS is the design matrix for the markers,
u are random effects, ε is the error term and K is the kinship matrix
encoding the relatedness between the individuals. When K can be
expressed in the form XSXS

T, GBLUP can be shown to be equivalent to
the Bayesian linear regression

Xt = µ+

S∑
i=1

X∗
siβi + ε with SNP effect prior β ∼ N

(
0,
σ2
g

S
I

)
,

for some transformation of the Xsi [14, 15].
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GBNs and Multivariate Extension of GBLUP

If we wish to model traits Xt1 , . . . XtT using a design matrix ZS from Xs1 , . . . XsS
genetic markers, GBLUP can be extended [8] as follows[

Xt1
Xt2

]
=

[
µt1
µt2

]
+

[
ZS O
O ZS

] [
ut1
ut2

]
+

[
εt1
εt2

]
,

where ut1 ,ut2 are random effects and εt1 , εt2 are error terms, both normally
distributed with covariances

G = COV

([
ut1
ut2

])
=

[
Gt1t1 Gt1t2

GT
t1t2

Gt2t2

]
,

R = COV

([
εt1
εt2

])
=

[
σ2
t1
I σ2

t1t2
I

σ2
t1t2

I σ2
t2
I

]
.

GBNs can be shown to be equivalent to GBLUP by considering the joint distribution
of traits and genetic markers (through the random effects), which leads to

Σ = COV



Xt1
Xt2

ut1
ut2


 =

 ZSGZT
S + R ZSG

(ZSG)T G

 .
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Assumptions for Genetic Data

In the spirit of commonly used additive genetic models [7, 10], we make
some further assumptions on the GBN to obtain a sensible causal model:

1. traits can depend on SNPs (i.e. Xsi → Xtj ) but not vice versa (i.e.
not Xtj → Xsi), and they can depend on other traits (i.e.
Xti → Xtj , i 6= j);

2. SNPs can depend on other SNPs (i.e. Xsi → Xsj , i 6= j); and

3. dependencies between traits follow the temporal order in which they
are measured.

Under these assumptions, the local distribution of each trait is

Xti = µti
+ ΠXti

βti
+ εti

= µti
+Xtjβtj + . . .+Xtkβtk︸ ︷︷ ︸

traits

+Xslβsl + . . .+Xsmβsm︸ ︷︷ ︸
SNPs

+εti , εti ∼ N(0, σ2
ti
I)

and the local distribution of each SNP is

Xsi = µsi
+Xslβsl + . . .+Xsmβsm︸ ︷︷ ︸

SNPs

+εsi , εsi ∼ N(0, σ2
si
I).
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Learning GBNs from Genetic Data

We used the R packages bnlearn [16] and penalized [6] to implement the
following hybrid approach to GBN learning [18].

1. Structure Learning.

1.1 For each trait Xti , use the SI-HITON-PC algorithm [1] and
the t-test for correlation to learn its parents and children; this
is sufficient to identify the Markov blanket B(Xti) because of
the assumptions on the GBN. The choice of SI-HITON-PC is
motivated by its similarity to single-SNP analysis.

1.2 Drop all the markers which are not in any B(Xti).
1.3 Learn the structure of the GBN from the nodes selected in the

previous step, setting the directions of the arcs as discussed
above. We identify the optimal structure as that which
maximises BIC.

2. Parameter Learning. Learn the parameters of the local distributions
using ridge regression.
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The Importance of Preprocessing and Feature Selection

Even though SI-HITON-PC scales extremely well, structure learning is
still O(p2). This makes data pre-processing crucial:

• we can remove SNPs that are nearly constant (i.e. one allele, the
minor allele, is almost absent from the data);

• we can remove highly correlated SNPs, which would form dense
clusters in G and increase model and computational complexity for
little gain in explaining the traits; and

• we can remove the influence of population structure from the traits
to reduce the number of spurious relationships in the GBN.

Using the Markov blankets for feature selection makes learning even
simpler, because we learn the full GBNs from a small subset of the
original variables.
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The Data: a MAGIC Wheat Population

The MAGIC data (Multiparent Advanced Generation Inter-Cross) include
721 wheat varieties, 16K markers and the following phenotypes:

• flowering time (FT);

• height (HT);

• yield (YLD);

• yellow rust, as measured in the glasshouse (YR.GLASS);

• yellow rust, as measured in the field (YR.FIELD);

• mildew (MIL); and

• fusarium (FUS).

Varieties with missing phenotypes or family information and markers with
> 20% missing data, minor allele frequencies < 0.01 and COR > 0.95
were dropped. The phenotypes were adjusted for family structure via
BLUP, leaving 600 varieties and 3.2K SNPs.
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GBN from Model Averaging, α = 0.10
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50 nodes
(7 traits, 43 SNPs)

78 arcs, interpreted as
putative causal effects

Thickness represents arc
strength, computed as
the frequency of each
arc in the GBNs used in
model averaging.

Type I error threshold for
the test is α = 0.10.
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Predictive Performance

YR YR
YLD FT HT FIELD GLASS MIL FUS Avg.

ENET ρG 0.15 0.30 0.48 0.39 0.59 0.21 0.27 0.34

GBLUP ρG 0.10 0.15 0.19 0.22 0.32 0.21 0.12 0.19

BN ρG 0.20 0.29 0.46 0.37 0.60 0.12 0.22 0.32
(α = 0.01) ρC 0.38 0.29 0.45 0.44 0.62 0.13 0.33 0.37

BN ρG 0.18 0.27 0.46 0.39 0.61 0.12 0.25 0.33
(α = 0.05) ρC 0.34 0.27 0.45 0.44 0.63 0.14 0.32 0.37

BN ρG 0.18 0.28 0.45 0.40 0.62 0.13 0.25 0.33
(α = 0.10) ρC 0.34 0.28 0.45 0.45 0.63 0.14 0.31 0.37

ρG = predictive correlation given all SNPs in the model.
ρC = predictive correlation given putative causal effects identified by the BN.

Computed averaging 10 × 10-fold cross-validations, σ = 0.01 for traits and σ = 0.005
for the average. ENET is a single-trait elastic net penalised regression [19]; GBLUP is
also in its classic single-trait form.
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Inference and Interpretation

Conditional probability queries provide an ideal means for many different
inferential tasks.

• Contrasting high and low values of traits makes it possible to
identity SNPs tagging known genes; if

|E(XSi
|Xtj > cHIGH)− E(XSi

|Xtj < cLOW)|

is large, it suggests that one allele of XSi is linked with low values
of Xti and the other with high values. Several known genes were
correctly identified this way (Rht-D1b for HT and FUS, Ppd-D1 for
FT, several genes for resistance to NIL and YR.GLASS).

• Confounding can be detected and accounting for; otherwise, we find
that YLD increases with FUS (it doesn’t when conditioning against
HT, which is adjacent to both).

• Known causal relationship between traits can be quantified and
validated by experts in the field (e.g. HT and FT affecting YLD).
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Pros & Cons of GBNs

Pros:

• SNPs that are associated with more than one trait (pleiotropic effects) are
included in the GBN even when association with just a single trait is detected;
at that point they can be linked to all the relevant traits.

• GBNs model correlation between traits effectively, unlike single-trait models
such as GBLUP and the elastic net.

• Confounding in genetic effects is reduced.

• The combination of a compact model and a graphical representation makes
GBNs ideal for qualitative reasoning.

• Lots of literature of causal reasoning [2, 9, 13].

Cons:

• SNPs that are jointly associated but individually independent from a trait
(epistatic effects) are not correctly modelled by the GBN because they violate
the faithfulness assumption in SI-HITON-PC.

• Performing feature selection impacts the ability of predicting traits influenced by
many small genetic effects (multigenic traits).
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Conclusions

• GBNs provide a general modelling framework in statistical
genetics, extending and subsuming existing models.

• Inference in GBNs in more flexible than in most of these
models.

• The graphical component of a GBN is a valuable tool in
disseminating results to non-statisticians.

This work is currently accepted for publication in Genetics as:

Scutari M, Howell P, Balding DJ, Mackay I (2014).
Multiple Quantitative Trait Analysis Using Bayesian Networks.
Genetics, to appear.
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