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Causality is a Network

Machine learning creates black boxes that use probabilistic associations
for prediction. Scientific questions are inherently causal.

Judea Pearl [10] has worked out a
rigorous theory of causality that uses
directed (acyclic) graphs to represent
causes and effects. With it, we can
reason about

• what we see,

• affecting change,

• hypothetical situations.

How can we learn them?



Causal Discovery Meets Data

Learning a causal networkmeans learning its structure𝒢 and parameters
Θ, much like Bayesian networks:

P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

We used to ask domain experts for information [5, 6]; now we rely
increasingly on learning algorithms and the data 𝒟 [11].

time space

siz
e

What we assume.

The actual data.



The Context: Infodemiology

• Combinations of comorbidities are often impossible to study in a
clinical trial.

• However, we have massive amounts of Internet-generated data
user-contributed health-related content.

• Infodemiology (short for “information epidemiology”) draws on this
data to replace epidemiological data with the ultimate goal of
improving public health.

We need to assume:

• a non-negligible association between the frequency of online
mentions of specific diseases and their incidence;

• a broad coverage of the population.



The Problem: Health, Pollution and Climate Change

Amotivating example: understanding the effect of pollution and
changing weather patterns onmental and dermatological conditions.

• Main Variables: 3 pollutants (NO2, SO2, PM2.5), 3 mental conditions
(anxiety, depression, sleep disorders), obesity, atopic dermatitis,
weather patterns (temperatures, wind speed, precipitations; both
mean and spread).

• Possible Confounders: education level, unemployment, income,
household size and population density.

• Size: ≈53k observations over ≈500 US counties and 134 weeks.

• Missing values: between 0% (the conditions) and 55% (pollutants).

Following up from a previous infodemiology study [12].



Data Sources: Google Trends, NOAA, EPA, US Census

Google  COVID-19  Open Data: 400  health 
conditions, 4 countries (county-level in 
the US), weekly search frequencies for 

2020-2023 normalised by NLP.

Monitoring stations 
in 1470 counties with
hourly measurements
of NOx, SOx, O3, PMx.

Weather stations 
in 1652 counties with
and satellite images.

Socio-economic data
at the population level
to avoid confounding.



Nuisance Parameters, Parameters of Interest

A causal network has two components: the graph 𝒢 and the parameters
Θ. Causal inference defines queries using 𝒢:

• Conditional independence, via d-separation.

• Intervention, via mutilation.

• Counterfactual, via the twin network.

Our ability to answer scientific questions using the causal network rests
on having the right nodes in the network. Without them, we cannot even
formulate our question.

• The dimensions we use in the queries (interest) should be
represented as nodes.

• The dimensions we do not (nuisance) should be represented as
parameters in the local distributions.



Network Structures: Time vs Space vs State-Space

Temporal Structure (dynamic BNs)

Spatial Structure State-Space Structure



Generalised Least Squares Networks

My proposal is to use the local distributions:

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ 𝜺𝑋𝑖

, 𝜺 ∼ 𝑁(0, Σ𝑋𝑖
+ K𝑋𝑖

)

where:

• Σ𝑋𝑖
= 𝜎2

𝑋𝑖
diag(w𝑋𝑖

) is heteroscedastic noise estimated by
iteratively reweighted least squares (IRLS);

• K𝑋𝑖
is the observations correlation structure not otherwise

modelled by 𝒢, via generalised least squares (GLS).

Score function: the penalised node-average log-likelihood (PNAL) for
incomplete data [4]:

PNAL(𝑋𝑖 ∣ Π𝑋𝑖
) = ̄ℓ(𝑋𝑖 ∣ Π𝑋𝑖

) + 𝜆𝑛 ∣Θ𝑋𝑖
∣ .

Denoising: bagging andmodel averaging with data-driven threshold [14].



Back to Our Example

• I care about time, but I do not care about space.

• I need different residual variances in different states due to how the
data are normalised.

I want to learn a dynamic BN that encodes a first-order vector
auto-regressive process (VAR):

𝑋(𝑡)
𝑖 = 𝜇(𝑡)

𝑋𝑖
+ Π(𝑡−1)

𝑋𝑖
𝜷(𝑡)

𝑋𝑖
+ 𝜺(𝑡)

𝑋𝑖
,

𝜺(𝑡)
𝑋𝑖

∼ 𝑁 (0, 𝜎2 (𝑡)
𝑋𝑖

diag (w(𝑡)
𝑋𝑖

) + K𝑋𝑖
)

with

w(𝑡)
𝑋𝑖

∝ 1/ VAR(𝜺𝑋𝑖
∣ state), K𝑋𝑖

= 𝑓 (‖latitude and longitude‖2; 𝜉) .



Code: The R Implementation

# provide an initial estimate.
model = nlme::gls(as.formula(f), data = full, method = "ML",

cor = nlme::corExp(value = args$spatial[, node],
form = ~ LAT + LON | WEEK, nugget = TRUE, fixed = TRUE))

old.logl = as.numeric(nlme:::logLik.gls(model), REML = FALSE)

# iteratively reweighted least squares.
for (iter in 1:(args$irls.max.iter)) {

# compute the per-state variances...
weights = sapply(levels(full[, "STATE"]), function(s) var(resid(model)[full[, "STATE"] == s]) )
for (i in seq(nrow(full)))
full[i, "w"] = weights[names(weights) == full[i, "STATE"]]

# ... and re-estimate the model.
model = nlme::gls(as.formula(f), data = full, method = "ML",

cor = nlme::corExp(value = args$spatial[, node],
form = ~ LAT + LON | WEEK, nugget = TRUE, fixed = TRUE),

weights = nlme::varFixed(~ w))
new.logl = as.numeric(nlme:::logLik.gls(model, REML = FALSE))

# check convergence.
if (isTRUE(all.equal(old.logl, new.logl)))
break

else
old.logl = new.logl

}#FOR



Incomplete Data + Time (Looks Very Wrong)
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Incomplete Data + Time

Residuals are largely free from autocorrelation! Check-Circle

lag 1 lag 2 lag 3 lag 4
ANX 0.024 0.000 0.000 0.048
DEP 0.016 0.000 0.000 0.000
DER 0.032 0.000 0.000 0.000
OBE 0.000 0.000 0.000 0.000
SLD 0.092 0.007 0.007 0.000

But they are full of spatial correlation! Times-Circle

proportion
ANX 0.460
DEP 0.325
DER 0.754
OBE 0.563
SLD 0.381



Incomplete Data + Space + Time (Looks Less Wrong)
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Incomplete Data + Space + Time

The causal network fits the data much better! Check-Circle

log BF = (−26.83) − (−31.23) = 4.4 ⟹ BF = 81.59.

But the residuals are markedly heteroscedastic! Times-Circle

p-value
ANX 4 × 10-169

DEP 1 × 10-212

DER 0
OBE 6 × 10-100

SLD 1 × 10-154

Onemore (and last) time...



Incomplete Data + Space + Time + Heteroscedasticity (Looks OK)
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Incomplete Data + Space + Time + Heteroscedasticity

The causal network fits the data much better! Check-Circle

log BF = (−23.6) − (−26.83) = 3.23 ⟹ BF = 25.31.

The weighted residuals are completely homoscedastic! Check-Circle

p-value
ANX 1
DEP 1
DER 1
OBE 1
SLD 1



Theoretical Considerations

• The causal network is completely identifiable because:

• Arc directions across time points are fixed.

• Heteroscedastic residuals + Gaussian noise [7, 17, 18].

• Even if all w(𝑡)
𝑋𝑖

= 1, the actual residuals (K(𝑡)
𝑋𝑖

)−1/2𝜺(𝑡)
𝑋𝑖

should be
heteroscedastic unless K(𝑡)

𝑋𝑖
∝ I𝑛.

• If we use K to model temporal dependencies, it can encode a full
vector ARMA process [16].

• 𝒢 requires equidistant points; K can accommodate irregularly spaced
points in time or space.



Computational Considerations

• GLS scales 𝑂(𝑛3), (sparse) causal discovery scales 𝑂(|X|2).

• Divide and conquer works wonders:

• The parameters 𝜉 of K are (almost) independent from Π𝑋𝑖
: we can

pre-estimate them and keep them fixed during causal discovery.
• It is much faster to estimate the w(𝑡)

𝑋𝑖
by wrapping GLS in IRLS than doing

so directly in GLS.

• Still, imposing sparsity is critical. Subsampling within model
averaging and blacklisting arcs help as well.

• PNAL is so much faster than Structural EM [8, 9] that causal discovery
from incomplete data becomes feasible.



Much Needed Extensions

• Using GLMs is straightforward because we can estimate themwith
IRLS, which we already use, and allows for discrete variables.

• Bringing change point detection from the literature on VARs [1, 2].

• Amore robust handling of missing values, proving that PNAL works
under MAR or leveraging my students’ work on causal discovery under
MNAR [3, 19, 20].

• Incorporating random effects to separate global and local effects (in
time/space/sub-populations) frommy previous work [13, 15].



Conclusions

• Causal discovery makes simplifying assumptions that are too strong.

• Classical statistics gives us flexible and scalable tools to model
complex structures inn the data.

• Pose the research question first: model the data dimensions you need
graphically, and hide the rest in the local distributions.

• State-space data, mixed variable types, missing values, population
structure, non-stationarity: we can deal with them!
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That's all!

Happy to discuss in more detail.
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