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The Problem: Building Causal Models

Studying comorbidities for several diseases at an epidemiological level is
hard because:
• they must all be monitored simultaneously;
• they must be monitored over large populations for the results to
generalise;

• they must be monitored for long enough periods of time to build a
longitudinal data set that can capture their evolution and
interactions.

For these reasons, most comorbidity studies:
• only include 2–3 diseases, and
• are cross-sectional, or contain at most 2–3 time points.

This makes it very difficult to build Bayesian networks that can be used
as causal models and that can describe complex feedback loops.



The Data: Google Trends

During the COVID 19 pandemic, Google has made available a large data
set with (among other things) the search queries containing keywords
identifying ~400 health conditions:

Google’s COVID-19 Open-Data
https://github.com/GoogleCloudPlatform/covid-19-open-data

The data:
• span different countries (US, UK, Ireland, Australia, Singapore),
sometimes drilling down into individual states and counties (US,
Australia);

• span three years (2020, 2021 and 2022) with daily records;
• are normalised and aggregated by search keyword using the best of
Google’s NLPmodels;

• are normalised consistently into search frequencies by geographical
area.

https://github.com/GoogleCloudPlatform/covid-19-open-data


The Solution: Infodemiology

If we assume that:
• there is a non-negligible association between the frequency of
online searches for specific diseases and the actual incidence of
those diseases in physicians’ diagnoses;

• restricting ourselves to searches performed on Google is not a
significant limitation because of the prevalence of its use.

We can approach the study of comorbidities using infodemiology (short
for “information epidemiology”): scanning Internet-generated data for
user-contributed health-related content, with the ultimate goal of
improving public health.

Here the Internet-generated data are Google’s COVID-19 Open-Data, and
our aim is to build a causal network linking skin diseases andmental
illnesses using dynamic Bayesian networks.



Check Google Trends and Infodemiology
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A Graph and a Probability Distribution

A Bayesian network (BN) [5] is defined by:

• a network structure, a directed acyclic graph 𝒢 in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution X with parameters Θ, which can be
factorised into smaller local probability distributions according to
the arcs present in 𝒢.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖 in 𝒢} .



Bayesian Network Structure Learning

Learning a BN ℬ = (𝒢, Θ) from a data set 𝒟 involves two steps:

P(ℬ ∣ 𝒟) = P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

Structure learning consists in finding the DAG with the best

P(𝒢 ∣ 𝒟) ∝ P(𝒢)⏟
graph prior

⋅ P(𝒟 ∣ 𝒢)⏟⏟⏟⏟⏟
marginal likelihood

= P(𝒢) ∫ P(𝒟 ∣ 𝒢, Θ) P(Θ ∣ 𝒢) 𝑑Θ

which is known as score-based learning [2]. The alternative, constraint-
based learning, uses tests following Pearl’s work on causality [6]:

𝑋𝑖 ⟂⟂𝑃 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
conditional independence

⟹ 𝑋𝑖 ⟂⟂𝐺 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
graphical separation

.

Parameter learning consists in estimating the parameter sets Θ𝑋𝑖
∣ Π𝑋𝑖

.



Dynamic Bayesian Networks

Dynamic BNs (DBNs) [3] combine classic BNs and Markov processes to
model dynamic data in which each individual is measured repeatedly
over time, such as longitudinal or panel data.

Assume we have one set X(𝑡) of random variables for each of 𝑡 = 1, … , 𝑇
time points. We canmodel it as a DBN with a Markov process of the form

P (X(0), … , X(𝑇 )) = P (X(0))
𝑇

∏
𝑡=1

P (X(𝑡) ∣ X(𝑡−1)) .

where P(X(0)) gives the initial state of the process and P(X(𝑡) ∣ X(𝑡−1))
defines the transition between times 𝑡 − 1 and 𝑡. Whenmodelling X(𝑡),
the nodes in X(𝑡−1) only appear in the conditioning; we take them to be
essentially fixed and to have no free parameters, so we leave them as
root nodes.



Dynamic Bayesian Networks

We canmodel this transition with a 2-time BN (2TBN) defined over
(X(𝑡−1), X(𝑡)), in which we naturally assume that any arc between a node
in 𝑡 − 1 and a node in 𝑡 must necessarily be directed towards the node in
𝑡 following the arrow of time.

Wemay also want to assume that there are no arcs connecting two
nodes in the same 𝑡 or, in other words, no instantaneous dependencies.

We can then write the decomposition into local distributions

P (X(𝑡) ∣ X(𝑡−1)) =
𝑁

∏
𝑖=1

P (𝑋(𝑡)
𝑖 ∣ Π𝑋(𝑡)

𝑖
) ,

and we usually assume that the parameters associated with the local
distributions do not change over time to make the process
time-homogeneous.



Dynamic Bayesian Networks as Causal Models

• Granger Causality: 𝑋2 → 𝑋1 if the predictions of the value of a
variable 𝑋1 based on its own past values and on the past values of 𝑋2
are better than the predictions of 𝑋1 based only on its own past
values [1].

• Pearl Causality: a more general theory that builds on BNs to describe
the semantics of causal reasoning including confounding,
identifiability, interventions, counterfactuals, causal queries, etc. [4].

DBNs are structured like an auto-regressive time series, so Granger
causality applies. They are also a specific instance of BNs, so Pearl’s
causality applies as well.
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The Network

The DBN includes the following skin diseases andmental illnesses:

• obesity (“OBE”)

• acne (“ACNE”)

• alcoholism (“ALC”)

• anxiety (“ANX”)

• asthma (“ASTH”)

• attention deficit hyperactivity
disorder (“ADHD”)

• burn (“BURN”)

• depression (“DEP”)

• dermatitis (“DER”)

• erectile dysfunction (“ED’)

• sleep disorder (“SLD”)

• scar (“SCAR”).

We use search queries aggregated weekly from users in the US between
2020-03-02 and 2022-01-24 (100 weeks), which are the least impacted by
missing data and are collected by state and county.

The overall sample size is 287900, making this a big-data problem.



The Network

All variables are continuous, since they are normalised search query
frequencies. Therefore, wemodel themwith a Gaussian BN so that each
local distribution P(𝑋𝑖 ∣ Π𝑋𝑖

) takes the form

𝑋(𝑡)
𝑖 = 𝜇(𝑡)

𝑖 + Π𝑋(𝑡)
𝑖

𝜷(𝑡)
𝑖 + 𝜺(𝑡)

𝑖 𝜺(𝑡)
𝑖 ∼ 𝑁(0, 𝜎2

𝑋(𝑡)
𝑖

).

In practice, each 𝑋(𝑡)
𝑖 represents a skin disease or mental condition in

X(𝑡) and will depend on the 𝑋(𝑡−1)
𝑖 representing the same skin disease or

mental condition in X(𝑡−1) among other Π𝑋(𝑡)
𝑖
.

PROS: this accounts (in part) for different baseline frequencies in
different states because 𝑋(𝑡)

𝑖 and 𝑋(𝑡−1)
𝑖 are paired variables and have

the same baseline frequency for each observation.
CONS: frequencies are compositional data that are positive and bound to
sum up to 1, a fact which we are disregarding in modelling themwith a
Gaussian distribution.



Temporal and Spatial Dependence Structure of the Data
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We Cannot Just Use a Static Bayesian Network!

inflation factor (absolute value, on a log−scale)
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• Decorrelating the data to remove the space-time dependence produces a
network that differs in 71% of the arcs from the original.

• 63% of the regression coefficients are inflated by a factor of 2 or more.

• The sign is different 29% of the coefficients.



Steps to Learn the Dynamic Bayesian Network

1. Rearrange the data to learn the 2TBN: keep the date and the location,
create the (𝑡 − 1, 𝑡) pairs for all the 12 conditions.

reshaped = parLapply(cl, levels(data$county),
function(each.county, data, symptoms) {

county.data = subset(data, county == each.county)
available.t0 = county.data$date[-length(county.data$date)]
available.t1 = county.data$date[-1]

t0 = subset(county.data, date %in% available.t0)[, symptoms]
t1 = subset(county.data, date %in% available.t1)[, symptoms]
names(t0) = paste0(symptoms, "_0")
names(t1) = paste0(symptoms, "_1")

return(cbind(county = each.county, date = available.t0, t0, t1))

}, data = data, symptoms = symptoms)

dyndata = do.call(rbind, reshaped)
dyndata$county = as.factor(dyndata$county)



Steps to Learn the Dynamic Bayesian Network

2. Set up the blacklist that prevents instantaneous arcs and arcs that go
backwards in time from being learned, then use it with hill-climbing
and BIC as a score to learn a Gaussian BN. The penalty for BIC is the
standard one for the moment, more on that later...

t0.vars = grep("_0", names(dyndata), value = TRUE)
t1.vars = grep("_1", names(dyndata), value = TRUE)

learn.dbn = function(data, penalty = 1) {

bl = rbind(tiers2blacklist(list(t0.vars, t1.vars)),
set2blacklist(t0.vars), set2blacklist(t1.vars))

hc(data, blacklist = bl, score = "bic-g", k = penalty * log(nrow(data) / 2))

}#LEARN.DBN

(Now this where I would normally conclude the talk with “Then we use
model averaging to remove the noise in the learning process and we
obtain an averaged network which is our final model”, but...)



Steps to Learn the Dynamic Bayesian Network

3. We are dealing with big-data: the amount of noise is small compared
to the information in the data. Hence the averaged network is not any
sparser than the individual networks being averaged.

bagging = function(i, data, counties, penalty = 1) {

keep = sample(counties, 0.75 * nlevels(counties))
boot.sample = data[counties %in% keep, ]
boot.sample = boot.sample[, sample(ncol(data), ncol(data))]

learn.dbn(boot.sample, penalty = penalty)

}#BAGGING
averaging = function(data, penalty = 1) {

dags = parLapply(cl, seq(500), bagging, data = data[, c(t0.vars, t1.vars)],
counties = data$county, penalty = penalty)

strength = custom.strength(dags, nodes = c(t0.vars, t1.vars))

averaged.network(strength)

}#AVERAGING

avg.dag = averaging(dyndata, penalty = 1)



The 2-Time Bayesian Network
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The Dynamic Bayesian Network
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What Went Wrong?

• The sample size is so large that even the tiniest effects are statistically
significant, which results in dense networks where most nodes are
connected to most other nodes.

• For the same reason, the amount noise in the data is relatively small
and all the networks learned during model averaging include the
same arcs. Therefore, model averaging has no arcs with low
confidence to remove and the averaged network is also dense.

• Each condition is regressed against itself at the previous time point: a
different baseline for the county then appears in both sides of the
equation, and accounts for some of the spatial dependence between
observations. Not all of it, however: we would need a spatial
correlation matrix between counties for that.

Things we can do: increase the penalty of BIC to make it drop the arcs
with the smallest effects, reduce the size of the bootstrap samples and
permute their columns to make learning noisier.



Making the Dynamic Bayesian Network Sparser

penalty, on a log−scale
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The Final Dynamic Bayesian Network
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Epidemiological Insights

DBNs provide a causal model of multiple conditions with longitudinal
measurements, allowing feedback loops to reproduce the natural cycle
of human health.

• The DBN confirms the interplay between skin diseases andmental
illnesses, including well-known clinical relationships, and puts them
into a larger context.

• The large number of feedback loops supports the existence of vicious
circles in which diseases exacerbate each other until treated
appropriately, even though the DBN does not show the starting point
of these circles.

• The DBN highlights key mediators, like sleep disorders, that establish
a bridge between the skin and the brain.

• Not controlling for important comorbidities like obesity may lead to
spurious conclusions, hiding the true relationships.



Conclusions

• Dynamic BNs allow us to differentiate between feedback loops and
unidirectional causal effects in a rigorous way through Pearl and
Granger causality frameworks.

• Sparsity in a BN learned from big data is about interpretability more
than denoising: there are many causal effects that are statistically
significant but are too small to be relevant in practical applications.
We want to remove them tomake the BNmore readable.

• Completely modelling spatial dependence in big data is challenging
because the spatial correlation matrix scales quadratically in the
sample size.

• Infodemiology can give valuable insights when the structure of the
data is taken into account.



Thanks!

Any questions?
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