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A Graph and a Probability Distribution

A Bayesian network (BN) [11] is defined by:

• a network structure, a directed acyclic graph 𝒢 in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution X with parameters Θ, which can be
factorised into smaller local probability distributions according to
the arcs present in 𝒢.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖 in 𝒢} .



Bayesian Network Structure Learning

Learning a BN ℬ = (𝒢, Θ) from a data set 𝒟 involves two steps:

P(ℬ ∣ 𝒟) = P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

Structure learning consists in finding the DAG with the best

P(𝒢 ∣ 𝒟) ∝ P(𝒢)⏟
graph prior

⋅ P(𝒟 ∣ 𝒢)⏟⏟⏟⏟⏟
marginal likelihood

= P(𝒢) ∫ P(𝒟 ∣ 𝒢, Θ) P(Θ ∣ 𝒢) 𝑑Θ

which is known as score-based learning [9]. As an alternative,
constraint-based learning uses tests to assess conditional independence
relationships following Pearl’s work on causal networks [18]:

𝑋𝑖 ⟂⟂𝑃 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
conditional independence

⟹ 𝑋𝑖 ⟂⟂𝐺 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
graphical separation

.

Parameter learning then consists in estimating the parameters of the
local distributions 𝑋𝑖 ∣ Π𝑋𝑖

.



The Classic Definition and Modern Extensions

What are we assuming when trying to learn a BN? Typically that:

• observations are independent and there are nomissing values;

• all variables are observed, that is, there are no latent variables
introducing confounding in the model;

• wemeasure probabilistic associations (or rather, independencies)
and we cannot necessarily interpret them as causal.

What happens if we relax these assumptions? Many extensions suddenly
become possible, see [14] for a recent review. In this talk we will discuss:

• Learning BNs from incomplete data with the node-averaged
likelihood [3].

• Learning BNs from continuous-time dynamic data [5].

• Learning BNs from heterogeneous data that are the collation of
multiple related data sets [1].
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Structure Learning in the Presence of Missing Data

Learning the structure of a BN from incomplete data is computationally
unfeasible because we need to perform a joint optimisation over the
missing values and the parameters to score each candidate network. The
maximum a posteriori DAGmaximises

P (𝒟 ∣ 𝒢) = ∫ P (𝒟𝑂, 𝒟𝑀 ∣ 𝒢, Θ) P (Θ ∣ 𝒢) 𝑑Θ

= ∫ P (𝒟𝑀 ∣ 𝒟𝑂, 𝒢, Θ)⏟⏟⏟⏟⏟⏟⏟⏟⏟
missing data

P (𝒟𝑂 ∣ 𝒢, Θ)⏟⏟⏟⏟⏟⏟⏟
observed data

P (Θ ∣ 𝒢) 𝑑Θ⏟⏟⏟⏟⏟
averaging over parameters

.

A full Bayesian approach would require averaging over all the possible
configurations of the missing data, leading to

P (𝒟 ∣ 𝒢) = ∬ P (𝒟𝑀 ∣ 𝒟𝑂, 𝒢, Θ) P (𝒟𝑂 ∣ 𝒢, Θ) P (Θ ∣ 𝒢) 𝑑Θ 𝑑𝒟𝑀.

which has one one extra dimension for eachmissing value. An additional
problem is that P(𝒟𝑀 ∣ 𝒟𝑂, 𝒢, Θ) does not factorise in the general case.



Structure Learning from Incomplete Data: Structural EM

The Structural Expectation-Maximisation (EM) algorithm [7] makes
structure learning computationally feasible by searching for the best
structure inside of EM instead of embedding EM inside a structure
learning algorithm. It consists of two steps like the classic EM:

• in the E-step, we complete the data by computing the expected
sufficient statistics using the current network structure;

• in the M-step, we find the structure that maximises the expected
score function for the completed data.

Since the scoring in the M-step uses the completed data , structure
learning can be implemented using standard algorithms. The original
proposal by Friedman [7] used BIC and greedy search; and he [8] later
extended SEM to a fully Bayesian approach based posterior scores, and
proved the convergence of the resulting algorithm.



The Node-Averaged Likelihood

Balov [2] proposed amore scalable approach for discrete BNs called
Node-Average Likelihood (NAL). NAL computes each term using the
locally-complete data 𝒟(𝑖) ⊆ 𝒟 for which 𝑋𝑖, Π𝑋𝑖

are observed:

̄ℓ(𝑋𝑖 ∣ Π𝑋𝑖
, Θ̂𝑋𝑖

) =
1

|𝒟(𝑖)|
∑
𝒟(𝑖)

log P(𝑋𝑖 ∣ Π𝑋𝑖
, Θ̂𝑋𝑖

) → E [ℓ(𝑋𝑖 ∣ Π𝑋𝑖
)] ,

which he used to define

𝑆PL(𝒢 ∣ 𝒟) = ̄ℓ(𝒢, Θ ∣ 𝒟) − 𝜆𝑛ℎ(𝒢), 𝜆𝑛 ∈ ℝ+, ℎ ∶ 𝔾 → ℝ+

and structure learning as �̂� = argmax𝒢∈𝔾 𝑆PL(𝒢 ∣ 𝒟).

We [3] proved both identifiability and consistency of structure learning
when using 𝑆PL(𝒢 ∣ 𝒟) for conditional Gaussian BNs, which include
discrete and Gaussian BNs as special cases.



AIC, BIC, NAL: Which of Them Are Consistent?

Let 𝒢0 be identifiable, 𝜆𝑛 → 0 as 𝑛 → ∞, and assume MLE’s and
NAL’s Hessians exist finite. Then as 𝑛 → ∞:
1. If 𝑛𝜆𝑛 → ∞, �̂� is consistent.
2. Under MCAR and VAR(NAL) < ∞, if

√
𝑛𝜆𝑛 → ∞, �̂� is

consistent.
3. Under the above, if lim inf𝑛→∞

√
𝑛𝜆𝑛 < ∞, then �̂� is not consistent.

We concluded that:

• In BIC, 𝑛𝜆𝑛 = log(𝑛)/2 → ∞ and
√

𝑛𝜆𝑛 = log(𝑛)/(2
√

𝑛) → 0, so BIC
is consistent for complete data but not for incomplete data.

• AIC is not consistent for either complete or incomplete data,
confirming [4].

• How to choose 𝜆𝑛 is an open problem.



Structural EM vs Node-Averaged Likelihood: Accuracy
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(It’s also faster than the Structural EM by a factor of 5x–10x.)
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Continuous-Time Bayesian Networks

Continuous-Time BNs (CTBNs) are a framework for modelling
finite-state, continuous-time processes. Their graphical representation
allows for natural, cyclic dependency graphs without having to specify a
temporal granularity [12].

A CTBN consists of two components:

• A directed graph encoding conditional
independencies.

• A conditional intensity matrix (CIM) Q𝑋𝑖 ∣ u
describing the evolution process of a
variable with the parameters
• q𝑋𝑖

: a set of intensities parameterising the
exponential distributions over when the next
transition occurs.

• 𝜽𝑋𝑖
: a set of probabilities parameterising the

distribution over where the state transitions.

X1

X2 X4

X3



Constraint-Based Structure Learning?

Score-based learning was covered by Nodelman [12] in his original work
on CTBNs. For constraint-based structure learning we need a new
definition of conditional independence [5]:

Let𝒩 be a CTBNwith a graph𝒢 overX. We say that𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗
if Q𝑋𝑖 ∣ 𝑥,s = Q𝑋𝑖 ∣ s for all values 𝑥, 𝑠 of 𝑋𝑗 and S𝑋𝑖,𝑋𝑗

.

Note that conditional independence is not symmetric in CTBNs! To test it
we need to test two separate hypotheses:

• Time To Transition: independence of the waiting times (q𝑋𝑖
), tested

with an 𝐹 test to compare their exponential distributions.

• State-to-State Transition: independence of the transitions (𝜽𝑋𝑖
),

tested with a two-sample 𝜒2 test or a Kolmogorov-Smirnov test.
We test time-to-transition hypothesis first and then, if the null is rejected,
the state-to-state hypotheses. If both nulls are rejected, 𝑋𝑖 and 𝑋𝑗 are
conditionally independent.



A PC Algorithm for Continuous-Time Bayesian Networks

Given how different is the definition of conditional independence, we
need to adapt the PC algorithm [6] to match.

1. Form a complete directed graph 𝒢 over X.
2. For each variable 𝑋𝑖:
2.1 Set U = {𝑋𝑗 ∈ X ∶ 𝑋𝑗 → 𝑋𝑖}, the current parent set.
2.2 For increasing values 𝑏 = 0, … , |U|:

(a) For each 𝑋𝑗 ∈ U, test 𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗
for all possible subsets of size 𝑏

of U ⧵ 𝑋𝑗.
(b) As soon as 𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗

for some S𝑋𝑖,𝑋𝑗
, remove 𝑋𝑗 → 𝑋𝑖 from 𝒢

and 𝑋𝑗 from U.

3. Return 𝒢.

We call this the Continuous-Time PC (CTPC) algorithm [5]. It has better
structural reconstruction accuracy than the score-based approach in
[12], but both approaches are slow: they are only practical for less than
20 variables.
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Related Data Sets

The aim: learning the structure of a BN
from a set of related data sets identified
by 𝐹, which is assumed known.

The approach: we would like to do that
by pooling information across different
data sets to distil structural features
that are common to all of them.

Themathematical formulation:

• for discrete variables, a variational
Bayesian Dirichlet score with a
hierarchical prior (BHD) [1];

• for continuous variables, using
mixed-effects models [13].

X1 X2

X3

X4

X5

F



The Hierarchical Model Behind BHD

Cat.Dir.Dir.

Cat.Dir.Dir.

Hierarchical
Model

Variational
Approximation

Thus we get BHD:

P(𝒟 ∣ 𝐹 , 𝒢) ≈
𝑁

∏
𝑖=1

|𝐹|

∏
𝑓=1

|Π𝑋𝑖|

∏
𝑗=1

[
Γ(𝑠𝑖 ̂𝜅𝑖𝑗)

Γ(𝑠𝑖 ̂𝜅𝑖𝑗 + 𝑛𝑓
𝑖𝑗)

|𝑋𝑖|

∏
𝑘=1

Γ(𝑠𝑖 ̂𝜅𝑖𝑗𝑘 + 𝑛𝑓
𝑖𝑗𝑘)

Γ(𝑠𝑖 ̂𝜅𝑖𝑗𝑘)
]

where 𝑠𝑖 ̂𝜅𝑖𝑗𝑘 = the posteriormean of𝛼𝑖𝑗𝑘 under the variationalmodel.



BHD versus BDeu
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The BHD score:

• has better structural accuracy than BDeu when we are modelling
related data sets;

• it gets increasingly better as the number of related grows;

• it gets increasingly better as the size of (at least some of) the
individual related data sets grows.



What About Continuous Variables?

In a Gaussian BN, each node 𝑋𝑖 has distribution

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ 𝜀𝑋𝑖

with 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑋𝑖
I𝑛). (1)

Adding the node 𝐹 would make it a conditional Gaussian BN in which we
fit a separate linear regression for each data set 𝑗 identified by 𝐹:

𝑋𝑖 = 𝜇𝑖𝑗 + Π𝑋𝑖
𝜷𝑖𝑗 + 𝜀𝑋𝑖

with 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑖𝑗I𝑛𝑗
). (2)

A mixed-effects model that takes (1) and adds random effects for all Π𝑋𝑖

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ Zb𝑋𝑖

+ 𝜀𝑋𝑖
, b𝑋𝑖

∼𝑁(0, Σ), 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑋𝑖
I𝑛)

has the same form as (2),

𝑋𝑖 = (𝜇𝑖𝑗 + 𝑏0𝑗) + Π𝑋𝑖
(𝜷𝑋𝑖

+ b𝑖𝑗) + 𝜀𝑋𝑖
,

but pools information across data sets much like BHD does.



Pooling versus No Pooling: Structural Hamming Distance

SHD(CGBN)

S
H

D
(L

M
E

)

10 samples 20 samples 50 samples 100 samples

2 
da

ta
se

ts
5 

da
ta

se
ts

10
 d

at
as

et
s

20
 d

at
as

et
s

50
 d

at
as

et
s

0
1

2
3
4

0 1 2 3 4

7%

91%

0 1 2 3 4

16%

81%

0 1 2 3 4

40%

54%

0 1 2 3 4

52%

41%

0
1
2

3
4

8%

90%

28%

65%

46%

40%

48%

40%

0
1
2

3
4

12%

84%

32%

58%

39%

46%

38%

48%

0

1
2

3
4

7%

89%

35%

57%

42%

49%

45%

40%

0

1
2
3

4

3%

96%

27%

70%

36%

58%

39%

52%



Pooling versus No Pooling: Kullback-Leibler Divergence

KL(CGBN)
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Conclusions and Future Directions

Bayesian networks are a fundamental tool in machine learning: they
subsumemanymodels [14] and handle incomplete data [3],
continuous-time time series [5] and collections of related data sets [1].

What next?

• Making CTBNs into Markov decision processes [10, 16] to model
scenarios such as streaming health data where we administer
medical treatments in real time.

• A comprehensive approach to related data sets that can handle
conditional Gaussian BNs, and thus discrete and Gaussian BNs as
particular cases.

• Relating different streams of research on learning BNs from
incomplete data [15, 17] and linking them to practical performance.
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Thanks!

Any questions?
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