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What Are Bayesian Networks?

A Graph and a Probability Distribution

Bayesian networks (BNs) are defined by:

� a network structure, a directed acyclic graph G = (V, A), in which
each node vi ∈ V corresponds to a random variable Xi;

� a global probability distribution X with parameters Θ, which can
be factorised into smaller local probability distributions according to
the arcs aij ∈ A present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =

p∏
i=1

P(Xi | ΠXi ; ΘXi) where ΠXi = {parents of Xi}
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What Are Bayesian Networks?

Key Books to Reference

(Best perused as ebooks, the Koller & Friedman is ≈ 21/2 inches thick.)
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What Are Bayesian Networks?

How the DAG Maps to the Probability Distribution

C
A B

D
E

F

DAG
Graphical
separation

Probabilistic
independence

Formally, the DAG is an independence map of the probability
distribution of X, with graphical separation (⊥⊥G) implying probabilistic
independence (⊥⊥P ).
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What Are Bayesian Networks?

Graphical Separation in DAGs (Fundamental Connections)

separation (undirected graphs)

d-separation (directed acyclic graphs)
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What Are Bayesian Networks?

Graphical Separation in DAGs (General Case)

Now, in the general case we can extend the patterns from the
fundamental connections and apply them to every possible path between
A and B for a given C; this is how d-separation is defined.

If A, B and C are three disjoint subsets of nodes in a directed
acyclic graph G, then C is said to d-separate A from B,
denoted A ⊥⊥G B | C, if along every path between a node in
A and a node in B there is a node v satisfying one of the
following two conditions:

1. v has converging edges (i.e. there are two edges pointing
to v from the adjacent nodes in the path) and none of v
or its descendants (i.e. the nodes that can be reached
from v) are in C.

2. v is in C and does not have converging edges.

This definition clearly does not provide a computationally feasible
approach to assess d-separation; but there are other ways.
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What Are Bayesian Networks?

A Simple Algorithm to Check D-Separation (I)

C
A B

D
E

F
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A B

D
E

F

Say we want to check whether A and E are d-separated by B. First, we
can drop all the nodes that are not ancestors (i.e. parents, parents’
parents, etc.) of A, E and B since each node only depends on its
parents.
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What Are Bayesian Networks?

A Simple Algorithm to Check D-Separation (II)

C
A B

E

C
A B
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Transform the subgraph into its moral graph by

1. connecting all nodes that have one parent in common; and

2. removing all arc directions to obtain an undirected graph.

This transformation has the double effect of making the dependence
between parents explicit by “marrying” them and of allowing us to use
the classic definition of graphical separation.
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What Are Bayesian Networks?

A Simple Algorithm to Check D-Separation (III)

C
A B

E

Finally, we can just perform e.g. a depth-first or breadth-first search and
see if we can find an open path between A and B, that is, a path that is
not blocked by C.
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What Are Bayesian Networks?

Completely D-Separating: Markov Blankets

Parents Children

Children's other parents
(Spouses)

Markov blanket of A

A

FI

H E

D

C

B

G

We can easily use the DAG to solve
the feature selection problem. The
set of nodes that graphically
isolates a target node from the rest
of the DAG is called its Markov
blanket and includes:

� its parents;

� its children;

� other nodes sharing a child.

Since ⊥⊥G implies ⊥⊥P , we can
restrict ourselves to the Markov
blanket to perform any kind of
inference on the target node, and
disregard the rest.
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What Are Bayesian Networks?

Different DAGs, Same Distribution: Topological Ordering

A DAG uniquely identifies a factorisation of P(X); the converse is not
true. Consider again the DAG on the left:

P(X) = P(A) P(B) P(C | A,B) P(D | C) P(E | C) P(F | D).

We can rearrange the dependencies using Bayes theorem to obtain:

P(X) = P(A | B,C) P(B | C) P(C | D) P(D | F ) P(E | C) P(F ),

which gives the DAG on the right, with a different topological ordering.
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What Are Bayesian Networks?

Different DAGs, Same Distribution: Equivalence Classes

On a smaller scale, even keeping the same underlying undirected graph
we can reverse a number of arcs without changing the dependence
structure of X. Since the triplets A→ B → C and A← B → C are
probabilistically equivalent, we can reverse the directions of their arcs as
we like as long as we do not create any new v-structure (A→ B ← C,
with no arc between A and C).

This means that we can group DAGs into equivalence classes that are
uniquely identified by the underlying undirected graph and the
v-structures. The directions of other arcs can be either:

� uniquely identifiable because one of the directions would introduce
cycles or new v-structures in the graph (compelled arcs);

� completely undetermined.
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What Are Bayesian Networks?

Completed Partially Directed Acyclic Graphs (CPDAGs)
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What Are Bayesian Networks?

What About the Probability Distributions?

The second component of a BN is the probability distribution P(X).
The choice should such that the BN:

� can be learned efficiently from data;

� is flexible (distributional assumptions should not be too strict);

� is easy to query to perform inference.

The three most common choices in the literature (by far), are:

� discrete BNs (DBNs), in which X and the Xi | ΠXi are
multinomial;

� Gaussian BNs (GBNs), in which X is multivariate normal and the
Xi | ΠXi are univariate normal;

� conditional linear Gaussian BNs (CLGBNs), in which X is a
mixture of multivariate normals and the Xi | ΠXi are either
multinomial, univariate normal or mixtures of normals.

It has been proved in the literature that exact inference is possible in
these three cases, hence their popularity.
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What Are Bayesian Networks?

Discrete Bayesian Networks

visit to Asia? smoking?

tuberculosis? lung cancer? bronchitis?

either tuberculosis
or lung cancer?

positive X-ray?
dyspnoea?

A classic example of DBN is
the ASIA network from
Lauritzen & Spiegelhalter
(1988), which includes a
collection of binary variables.
It describes a simple
diagnostic problem for
tuberculosis and lung cancer.

Total parameters of X :
28 − 1 = 255
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What Are Bayesian Networks?

Conditional Probability Tables (CPTs)

visit to Asia?

tuberculosis?

smoking?

lung cancer?

smoking?

bronchitis?

tuberculosis? lung cancer?

either tuberculosis
or lung cancer?

either tuberculosis
or lung cancer?

positive X-ray?

bronchitis?either tuberculosis
or lung cancer?

dyspnoea?

visit to Asia? smoking?

The local distributions
Xi | ΠXi take the form
of conditional
probability tables for
each node given all the
configurations of the
values of its parents.

Overall parameters of
the Xi | ΠXi : 18
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What Are Bayesian Networks?

Gaussian Bayesian Networks

mechanics analysis

vectors statistics

algebra

A classic example of GBN is
the MARKS networks from
Mardia, Kent & Bibby JM
(1979), which describes the
relationships between the
marks on 5 math-related
topics.

Assuming X ∼ N(µ,Σ), we can compute Ω = Σ−1. Then Ωij = 0
implies Xi ⊥⊥P Xj | X \ {X,Xj}. The absence of an arc Xi → Xj in
the DAG implies Xi ⊥⊥G Xj | X \ {X,Xj}, which in turn implies
Xi ⊥⊥P Xj | X \ {X,Xj}.

Total parameters of X : 5 + 15 = 20
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What Are Bayesian Networks?

Partial Correlations and Linear Regressions

The local distributions Xi | ΠXi take the form of linear regression
models with the ΠXi acting as regressors and with independent error
terms.

ALG = 50.60 + εALG ∼ N(0, 112.8)

ANL = −3.57 + 0.99ALG + εANL ∼ N(0, 110.25)

MECH = −12.36 + 0.54ALG + 0.46VECT + εMECH ∼ N(0, 195.2)

STAT = −11.19 + 0.76ALG + 0.31ANL + εSTAT ∼ N(0, 158.8)

VECT = 12.41 + 0.75ALG + εVECT ∼ N(0, 109.8)

(That is because Ωij ∝ βj for Xi, so βj > 0 if and only if Ωij > 0. Also
Ωij ∝ ρij , the partial correlation between Xi and Xj , so we are
implicitly assuming all probabilistic dependencies are linear.)

Overall parameters of the Xi | ΠXi : 11 + 5 = 16
Marco Scutari University of Oxford



What Are Bayesian Networks?

Conditional Linear Gaussian Bayesian Networks

CLGBNs contain both discrete and continuous nodes, and combine
DBNs and GBNs as follows to obtain a mixture-of-Gaussians network:

� continuous nodes cannot be parents of discrete nodes;

� the local distribution of each discrete node is a CPT;

� the local distribution of each continuous node is a set of linear
regression models, one for each configurations of the discrete
parents, with the continuous parents acting as regressors.

sexdrug

weight loss
(week 1)

weight loss
(week 2)

One of the classic examples is
the RATS’ WEIGHTS network
from Edwards (1995), which
describes weight loss in a drug
trial performed on rats.
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What Are Bayesian Networks?

Mixtures of Linear Regressions

The resulting local distribution for the first weight loss for drugs D1, D2

and D3 is:

W1,D1 = 7 + εD1 ∼ N(0, 2.5)

W1,D2 = 7.50 + εD2 ∼ N(0, 2)

W1,D3 = 14.75 + εD3 ∼ N(0, 11)

with just the intercepts since the node has no continuous parents. The
local distribution for the second loss is:

W2,D1 = 1.02 + 0.89βW1 + εD1 ∼ N(0, 3.2)

W2,D2 = −1.68 + 1.35βW1 + εD2 ∼ N(0, 4)

W2,D3 = −1.83 + 0.82βW1 + εD3 ∼ N(0, 1.9)

Overall, they look like random effect models with random intercepts and
random slopes.
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Case Study:

A Protein Signalling Network
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Case Study: A Protein Signalling Network

Source and Overview of the Data

Causal Protein-Signalling Networks Derived from
Multiparameter Single Cell Data
Karen Sachs, et al., Science, 308, 523 (2005);
DOI: 10.1126/science.1105809

That’s a landmark paper in applying BNs because it highlights the use of
interventional data; and because results are validated using existing literature.
The data consist in the 5400 simultaneous measurements of 11 phosphorylated
proteins and phospholypids:

� 1800 data subject only to general stimolatory cues, so that the protein
signalling paths are active;

� 600 data with with specific stimolatory/inhibitory cues for each of the
following 4 proteins: Mek, PIP2, Akt, PKA;

� 1200 data with specific cues for PKA.

The goal of the analysis is to learn what relationships link these 11 proteins,
that is, the signalling pathways they are part of.
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Case Study: A Protein Signalling Network

Analysis and Validated Network

Akt

Erk

Jnk

Mek

P38

PIP2

PIP3

PKA

PKC

Plcg

Raf

1. Outliers were removed and the data
were discretised, since it was
impossible to model them with a
GBN.

2. A large number of DAGs were
learned and averaged to produce a
more robust model. The averaged
DAG was created using the arcs
present in at least 85% of the DAGs.

3. The validity of the averaged BN was
evaluated against established
signalling pathways from literature.
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Case Study: A Protein Signalling Network

Bayesian Network Structure Learning

Learning a BN B = (G,Θ) from a data set D is performed in two steps:

P(B | D) = P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

In a Bayesian setting structure learning consists in finding the DAG with the
best P(G | D). We can decompose P(G | D) into

P(G | D) ∝ P(G) P(D | G) = P(G)

∫
P(D | G,Θ) P(Θ | G)dΘ

where P(G) is the prior distribution over the space of the DAGs and P(D | G)
is the marginal likelihood of the data given G averaged over all possible
parameter sets Θ; and then

P(D | G) =

N∏
i=1

[∫
P(Xi | ΠXi

,ΘXi
) P(ΘXi

| ΠXi
)dΘXi

]
.
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Case Study: A Protein Signalling Network

The Hill-Climbing Algorithm

The most common score-based structure learning algorithm, in which
we are looking for the DAG that maximises a score such as the posterior
P(G | D) or BIC, is a greedy search such as hill-climbing:

1. Choose an initial DAG G, usually (but not necessarily) empty.

2. Compute the score of G, denoted as ScoreG = Score(G).

3. Set maxscore = ScoreG .

4. Repeat the following steps as long as maxscore increases:
4.1 for every possible arc addition, deletion or reversal not introducing

cycles:

4.1.1 compute the score of the modified DAG G∗, ScoreG∗ = Score(G∗):
4.1.2 if ScoreG∗ > ScoreG , set G = G∗ and ScoreG = ScoreG∗ .

4.2 update maxscore with the new value of ScoreG.

5. Return the DAG G.

Only one local distribution changes in each step, which makes algorithm
computationally efficient and easy to speed up with caching.
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Case Study: A Protein Signalling Network

Learning Multiple DAGs from the Data

Searching from different starting points increases our coverage of the
space of the possible DAGs; the frequency with which an arc appears is
a measure of the strength of the dependence.
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Case Study: A Protein Signalling Network

Model Averaging for DAGs
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Arcs with significant strength can be identified using a threshold estimated
from the data by minimising the distance from the observed ECDF and the
ideal, asymptotic one (the blue area in the right panel).
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Case Study: A Protein Signalling Network

Combining Observational and Interventional Data

model without interventions

Akt

Erk

Jnk

Mek

P38

PIP2

PIP3

PKA

PKC

Plcg

Raf

model with interventions

Akt

Erk

Jnk

Mek

P38

PIP2

PIP3

PKA

PKC

Plcg

Raf

Observations must be scored taking into account the effects of the
interventions, which break biological pathways; the overall network score is a
mixture of scores adjusted for each experiment.
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Case Study: A Protein Signalling Network

Using The Protein Network to Plan Experiments

This idea goes by the name of hypothesis generation: using a statistical
model to decide which follow-up experiments to perform. BNs are
especially easy to use for this because they automate the computation
of arbitrary events.

P(Akt)

probability

A
kt

LOW

AVG

HIGH

0.0 0.2 0.4 0.6

without intervention
with intervention

P(PKA)

probability

P
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LOW
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0.2 0.4 0.6

without intervention
with intervention
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Case Study: A Protein Signalling Network

Conditional Probability Queries

DBNs, GBNs, CLGBNs all have exact inference algorithms to compute
conditional probabilities for an event given some evidence. However,
approximate inference scales better and the same algorithms can be
used for all kinds of BNs. An example is likelihood weighting below.

Input: a BN B = (G,Θ), an query Q = q and a set of evidence E
Output: an approximate estimate of P(Q | E, G,Θ).

1. Order the Xi according to the topological ordering in G.

2. Set wE = 0 and wE,q = 0.

3. For a suitably large number of samples x = (x1, . . . , xp):

3.1 generate x(i), i = 1, . . . , p from X(i) | ΠX(i)
using the values

e1, . . . , ek specified by the hard evidence E for Xi1 , . . . , Xik .
3.2 compute the weight wx =

∏
P(Xi∗ = e∗ | ΠXi∗ )

3.3 set wE = wE + wx;
3.4 if x includes Q = q , set wE,q = wE,q + wx.

4. Estimate P(Q | E, G,Θ) with wE,q/wE.
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Case Study:

Genome-Wide Predictions
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Case Study: Genome-Wide Predictions

MAGIC Populations: Wheat and Rice

Sequence data (e.g. SNP markers) is routinely used in statistical genetics to
understand the genetic basis of human diseases, and to breed traits of
commercial interest in plants and animals. Multiparent (MAGIC) populations
are ideal for the latter. Here we consider two:

� A winter wheat population: 721 varieties, 16K markers, 7 traits.

� An indica rice population: 1087 varieties, 4K markers, 10 traits.

Phenotypic traits include flowering time, height, yield, a number of disease
scores; and physical and quality traits for grains in rice.
The goal of the analysis is to find key markers controlling the traits; the causal
relationships between them; keep a good predictive accuracy.

Multiple Quantitative Trait Analysis Using Bayesian
Networks
Marco Scutari, et al., Genetics, 198, 129–137 (2014);
DOI: 10.1534/genetics.114.165704
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Case Study: Genome-Wide Predictions

Bayesian Networks for Selection and Association Studies

If we have a set of traits and markers for each variety, all we need are
the Markov blankets of the traits; most markers are discarded in the
process. Using common sense, we can make some assumptions:

� traits can depend on markers, but not vice versa;

� dependencies between traits should follow the order of the
respective measurements (e.g. longitudinal traits, traits measured
before and after harvest, etc.);

� dependencies in multiple kinds of genetic data (e.g. SNP + gene
expression or SNPs + methylation) should follow the central
dogma of molecular biology.

Assumptions on the direction of the dependencies allow to reduce
Markov blankets learning to learning the parents and the children of
each trait, which is a much simpler task.
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Case Study: Genome-Wide Predictions

Parametric Assumptions

In the spirit of classic additive genetics models, we use a Gaussian BN.
Then the local distribution of each trait Ti is a linear regression model

Ti = µTi
+ ΠTi

βTi
+ εTi

= µTi
+ TjβTj

+ . . .+ TkβTk︸ ︷︷ ︸
traits

+GlβGl
+ . . .+GmβGm︸ ︷︷ ︸

markers

+εTi

and the local distribution of each marker Gi is likewise

Gi = µGi
+ ΠGi

βGi
+ εGi

=

= µGi
+GlβGl

+ . . .+GmβGm︸ ︷︷ ︸
markers

+εGi

in which the regressors (ΠTi or ΠGi) are treated as fixed effects. ΠTi

can be interpreted as causal effects for the traits, ΠGi as markers being
in linkage disequilibrium with each other.
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Case Study: Genome-Wide Predictions

Learning the Bayesian Network (I)

1. Feature Selection.

1.1 Independently learn the parents and the children of each trait with
the SI-HITON-PC algorithm; children can only be other traits,
parents are mostly markers, spouses can be either. Both are selected
using the exact Student’s t test for partial correlations.

1.2 Drop all the markers that are not parents of any trait.

Parents and children of T1 Parents and children of T2 Parents and children of T3 Parents and children of T4

Redundant markers that are not in the
Markov blanket of any trait
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Case Study: Genome-Wide Predictions

Constraint-Based Structure Learning Algorithms

C
A B

D
E

F

CPDAG
Graphical

separation

Conditional

independence tests

The mapping between edges and conditional independence relationships
lies at the core of BNs; therefore, one way to learn the structure of a
BN is to check which such relationships hold using a suitable conditional
independence test. Such an approach results in a set of conditional
independence constraints that identify a single equivalence class.
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Case Study: Genome-Wide Predictions

The Semi-Interleaved HITON-PC Algorithm

Input: each trait Ti in turn, other traits (Tj) and all markers (Gl), a
significance threshold α.
Output: the set CPC parents and children of Ti in the BN.

1. Perform a marginal independence test between Ti and each Tj (Ti ⊥⊥ Tj)
and Gl (Ti ⊥⊥ Gl) in turn.

2. Discard all Tj and Gl whose p-values are greater than α.

3. Set CPC = {∅}.

4. For each the Tj and Gl in order of increasing p-value:

4.1 Perform a conditional independence test between Ti and Tj/Gl

conditional on all possible subsets Z of the current CPC
(Ti ⊥⊥ Tj | Z ⊆ CPC or Ti ⊥⊥ Gl | Z ⊆ CPC).

4.2 If the p-value is smaller than α for all subsets then
CPC = CPC ∪ {Tj} or CPC = CPC ∪ {Gl}.

NOTE: the algorithm is defined for a generic independence test, you can plug
in any test that is appropriate for the data.
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Case Study: Genome-Wide Predictions

Learning the Bayesian Network (II)

2. Structure Learning. Learn the structure of the network from the nodes
selected in the previous step, setting the directions of the arcs according
to the assumptions above. The optimal structure can be identified with a
suitable goodness-of-fit criterion such as BIC. This follows the spirit of
other hybrid approaches that have shown to be well-performing in
literature.

Empty network Learned network
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Case Study: Genome-Wide Predictions

Learning the Bayesian Network (III)

3. Parameter Learning. Learn the parameters: each local distribution is a
linear regression and the global distribution is a hierarchical linear model.
Typically least squares works well because SI-HITON-PC selects sets of
weakly correlated parents; ridge regression can be used otherwise.

Learned network Local distributions
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Case Study: Genome-Wide Predictions

Model Averaging and Assessing Predictive Accuracy

We perform all the above in 10 runs of 10-fold cross-validation to

� assess predictive accuracy with e.g. predictive correlation;

� obtain a set of DAGs to produce an averaged, de-noised consensus DAG
with model averaging.
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Case Study: Genome-Wide Predictions

WHEAT: a Bayesian Network (44 nodes, 66 arcs)
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Case Study: Genome-Wide Predictions

RICE: a Bayesian Network (64 nodes, 102 arcs)
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Case Study: Genome-Wide Predictions

Predicting Traits for New Individuals

We can predict the traits:

1. from the averaged consensus
network;

2. from each of the 10× 10 networks
we learn during cross-validation,
and average the predictions for
each new individual and trait.

Option 2. almost always provides better
accuracy than option 1., especially for
polygenic traits; 10× 10 networks can
cover the genome much better, and we
have to learn them anyway.

So: averaged network for interpretation,
ensemble of networks for predictions.
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Case Study: Genome-Wide Predictions

Causal Relationships Between Traits

One of the key properties of BNs is their ability of
capturing the direction of the causal relationships
among traits in the absence of latent confounders
(the experimental design behind the data collection
should take care of a number of them).

It works because each trait will have at least one
incoming arc from the markers, say Gl → Tj , and
then (Gl →)Tj ← Tk and (Gl →)Tj → Tk are not
probabilistically equivalent. So the network can

� suggest the direction of novel relationships;

� confirm the direction of known relationships,
troubleshooting the experimental design and
data collection.
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Case Study: Genome-Wide Predictions

Spotting Confounding Effects

HT

G2570

G832

G1896

G2953

YLD

FUS

G2835(WHEAT) Traits can interact in complex ways that may not
be obvious when they are studied individually,
but that can be explained by considering
neighbouring variables in the network.
An example: in the WHEAT data, the difference
in the mean YLD between the bottom and top
quartiles of the FUS disease scores is +0.08.

So apparently FUS is associated with increased YLD! What we are actually
measuring is the confounding effect of HT (FUS ← HT → YLD); conditional
on each quartile of HT, FUS has a negative effect on YLD ranging from -0.04
to -0.06. This is reassuring since it is known that susceptibility to fusarium is
positively related to HT, which in turn affects YLD.
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Case Study: Genome-Wide Predictions

Disentangling Pleiotropic Effects

When a marker is shown to be associated to
multiple traits, we should separate its direct
and indirect effects on each of the traits.
(Especially if the traits themselves are linked!)
Take for example G1533 in the RICE data set:
it is putative causal for YLD, HT and FT.

HT

FT

G4432

G1533

G4109

YLD

(RICE)

� The difference in mean between the two homozygotes is +4.5cm in HT, +2.28 weeks in
FT and +0.28 t/ha in YLD.

� Controlling for YLD and FT, the difference for HT halves (+2.1cm);

� Controlling for YLD and HT, the difference for FT is about the same (+2.3 weeks);

� Controlling for HT and FT the difference for YLD halves (+0.16 t/ha).

So, the model suggests the marker is causal for FT and that the effect on the
other traits is partly indirect. This agrees from the p-values from an
independent association study (FT: 5.87e-28 < YLD: 4.18e-10, HT:1e-11).
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Case Study: Genome-Wide Predictions

Identifying Causal (Sets of) Markers

Compared to additive regression models, BNs make it trivial to compute:

� posterior probability of association for a marker and a trait after all the
other markers and traits are taken into account to rule out linkage
disequilibrium, confounding, pleiotropy, etc.;

� expected allele counts nLOW and nHIGH for a marker and low/high values
of a set of traits (nLOW − nHIGH should be large if the marker tags a
causal variant and thus should show which allele is favourable).

G1778 G3872 G4529 G1440 G5794
small grains 0.00 0.78 0.29 0.16 0.74
large grains 2.00 0.47 0.63 0.35 0.12

G4668 G2764 G3927 G3992 G4432
small grains 0.24 0.29 0.18 0.09 0.00
large grains 0.17 0.00 0.62 0.29 0.82

small grains = bottom 10% GL, bottom 10% GW in the RICE data.
large grains = top 10% GL, top 10% GW.
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Conclusions

Conclusions and Remarks

� BNs provide an intuitive representation of the relationships linking
heterogeneous sets of variables, which we can use for qualitative and
causal reasoning.

� We can learn BNs from data while including prior knowledge as
needed to improve the quality of the model.

� BNs subsume a large number of probabilistic models and thus can
readily incorporate other techniques from statistics and computer
science (via information theory).

� For most tasks we can start just reusing state-of-the-art, general
purpose algorithms.

� Once learned, BNs provide a flexible tool for inference, while
maintaining good predictive power.

� Markov blankets are a valuable tool for feature selection, and make it
possible to learn just part of the BN depending on the goals of the
analysis.
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That’s all, Thanks!
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