
Applications of Bayesian Networks
in Genetics and Systems Biology

Marco Scutari

m.scutari@ucl.ac.uk
Genetics Institute

University College London

September 13, 2013

Marco Scutari University College London

mailto:m.scutari@ucl.ac.uk


Bayesian Networks: an Overview

A Bayesian network (BN) [14, 19] is a combination of:

• directed graph (DAG) G = (V, E), in which each node
vi ∈ V corresponds to a random variable Xi (a gene, a trait,
an environmental factor, etc.);

• a global probability distribution over X = {Xi}, which can be
split into simpler local probability distributions according to
the arcs aij ∈ E present in the graph.

This combination allows a compact representation of the joint
distribution of high-dimensional problems, and simplifies inference
using the graphical properties of G. Under some additional
assumptions arcs may represent causal relationships [20].
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The Two Main Properties of Bayesian Networks
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The defining characteristic of BNs is that
graphical separation implies (conditional)
probabilistic independence. As a result,
the global distribution factorises into local
distributions: each is associated with a
node Xi and depends only on its parents
ΠXi ,

P(X) =

p∏
i=1

P(Xi | ΠXi
).

In addition, we can visually identify the
Markov blanket of each node Xi (the set
of nodes that completely separates Xi

from the rest of the graph, and thus in-
cludes all the knowledge needed to do in-
ference on Xi).
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Bayesian Networks in Genetics & Systems Biology

Bayesian networks are versatile and have several potential applications
because:

• dynamic Bayesian networks can model dynamic data [8, 13, 15];

• learning and inference are (partly) decoupled from the nature of the
data, many algorithms can be reused changing tests/scores [18];

• genetic, experimental and environmental effects can be
accommodated in a single encompassing model [22];

• interactions can be learned from the data [16], specified from prior
knowledge or anything in between [17, 2];

• efficient inference techniques for prediction and significance testing
are mostly codified.

Data: SNPs [16, 9], expression data [2, 22], proteomics [22],
metabolomics [7], and more...
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Causal Protein-Signalling

Network from Sachs et al.
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Causal Protein-Signalling Network from Sachs et al.

Source and Overview of the Data

DOI: 10.1126/science.1105809
, 523 (2005);308Science
, et al.Karen Sachs

Causal Protein-Signaling Networks Derived from
Multiparameter Single-Cell Data

That’s a landmark paper in applying Bayesian Networks because:

• it highlights the use of observational vs interventional data;

• results are validated using existing literature.

The data consist in the 5400 simultaneous measurements of 11
phosphorylated proteins and phospholypids derived from thousands of
individual primary immune system cells:

• 1800 data subject only to general stimolatory cues, so that the
protein signalling paths are active;

• 600 data with with specific stimolatory/inhibitory cues for each of
the following 4 proteins: Mek, PIP2, Akt, PKA;

• 1200 data with specific cues for PKA.
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Causal Protein-Signalling Network from Sachs et al.

Analysis and Validated Network
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1. Outliers were removed and the
data were discretised using the
approach described in [10].

2. A large number of DAGs were
learned and averaged to produce
a more robust model. The
averaged DAG was created using
the arcs present in at least 85%
of the DAGs.

3. The validity of the averaged BN
was evaluated against established
signalling pathways from
literature.
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Causal Protein-Signalling Network from Sachs et al.

Discretising Gene Expression Data

Hartemink’s Information Preserving Discretisation [10]:

1. Discretise each variable independently using quantiles and a large
number k1 of intervals, e.g. k1 = 50 or even k1 = 100.

2. Repeat the following steps until each variable has k2 � k1 intervals,
iterating over each variable Xi, i = 1, . . . , p in turn:

2.1 compute pairwise mutual information coefficients

MXi
=

∑
j 6=i

MI(Xi, Xj);

2.2 collapse each pair l of adjacent intervals of Xi in a single
interval, and from the resulting variable X∗i (l) compute

MX∗
i (l)

=
∑
j 6=i

MI(X∗i (l), Xj);

2.3 keep the best X∗i (l): Xi = argmaxXi(l) MX∗
i (l)

.
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Causal Protein-Signalling Network from Sachs et al.

Learning Multiple DAGs from the Data

Searching for high-scoring models from different starting points models
increases our coverage of the space of the possible DAGs; the frequency
with which an arc appears is a measure of the strength of the dependence.
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Causal Protein-Signalling Network from Sachs et al.

Model Averaging for DAGs
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Arcs with significant strength can be identified using a threshold [26]
estimated from the data by minimising the distance from the observed
ECDF and the ideal, asymptotic one (the blue area in the right panel).
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Causal Protein-Signalling Network from Sachs et al.

Combining Observational and Interventional Data
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Observations must be scored taking into account the effects of the
interventions, which break biological pathways; the overall network score
is a mixture of scores adjusted for each experiment [4].
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Genomic Selection and

Genome-Wide Association

Studies
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Genomic Selection and Genome-Wide Association Studies

Bayesian Networks for GS and GWAS

From the definition, if we have a set of traits and markers for each variety,
all we need for GS and GWAS are the Markov blankets of the traits [25].
Using common sense, we can make some additional assumptions:

• traits can depend on markers, but not vice versa;

• traits that are measured after the variety is harvested can depend on
traits that are measured while the variety is still in the field (and
obviously on the markers as well), but not vice versa.

Most markers are discarded when the Markov blankets are learned. Only
those that are parents of one or more traits are retained; all other
markers’ effects are indirect and redundant once the Markov blankets
have been learned. Assumptions on the direction of the dependencies
allow to reduce Markov blankets learning to learning the parents of each
trait, which is a much simpler task.
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Genomic Selection and Genome-Wide Association Studies

Learning the Bayesian network

1. Feature Selection.

1.1 For each trait, use the SI-HITON-PC algorithm [1, 24] to learn
the parents and the children of the trait; children can only be
other traits, parents are mostly markers, spouses can be either.
Dependencies are assessed with Student’s t-test for Pearson’s
correlation [12] and α = 0.01.

1.2 Drop all the markers which are not parents of any trait.

2. Structure Learning. Learn the structure of the BN from the nodes
selected in the previous step, setting the directions of the arcs
according to the assumptions in the previous slide. The optimal
structure can be identified with a suitable goodness-of-fit criterion
such as BIC [23]. This follows the spirit of other hybrid approaches
[6, 28], that have shown to be well-performing in literature.

3. Parameter Learning. Learn the parameters of the BN as a Gaussian
BN [14]: each local distribution in a linear regression and the global
distribution is a hierarchical linear model.
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Genomic Selection and Genome-Wide Association Studies

The Parameters of the Bayesian Network

The local distribution of each trait Xi is a linear model

Xi = µ+ ΠXiβ + ε

= µ+Xjβj + . . .+Xkβk︸ ︷︷ ︸
traits

+Xlβl + . . .+Xmβm︸ ︷︷ ︸
markers

+ε

which can be estimated any frequentist or Bayesian approach in
which the nodes in Xi are treated as fixed effects (e.g. ridge
regression [11], elastic net [32], etc.).

For each marker Xi, the nodes in ΠXi are other markers in LD with
Xi since COR(Xi, Xj |ΠXi) 6= 0⇔ βj 6= 0. This is also intuitively
true for markers that are children of Xi, as LD is symmetric.
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Genomic Selection and Genome-Wide Association Studies

The MAGIC Wheat Data

The MAGIC data include 721 wheat varieties, 16K markers and the
following phenotypes:

• flowering time (FT);

• height (HT);

• yield (YLD);

• yellow rust, as measured in the glasshouse (YR.GLASS);

• yellow rust, as measured in the field (YR.FIELD);

• mildew (MIL) and

• fusarium (FUS).

Varieties with missing phenotypes or family information and markers with
> 20% missing data were dropped. The phenotypes were adjusted for
family structure via BLUP and the markers screened for MAF > 0.01 and
COR < 0.99.
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Genomic Selection and Genome-Wide Association Studies

Bayesian Network Learned from MAGIC
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51 nodes (7 traits, 44 markers), 86 arcs, 137 parameters for 600 obs.
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Genomic Selection and Genome-Wide Association Studies

Assessing Arc Strength with Bootstrap Resampling

Friedman et al. [5] proposed an approach to assess the strength of each
arc based on bootstrap resampling and model averaging:

1. For b = 1, 2, . . . ,m:

1.1 sample a new data set X∗b from the original data X using
either parametric or nonparametric bootstrap;

1.2 learn the structure of the graphical model Gb = (V, Eb) from
X∗b .

2. Estimate the confidence that each possible edge ei is present in the
true network structure G0 = (V, E0) as

p̂i = P̂(ei) =
1

m

m∑
b=1

1l{ei∈Eb},

where 1l{ei∈Eb} is equal to 1 if ei ∈ Eb and 0 otherwise.
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Genomic Selection and Genome-Wide Association Studies

Averaged Bayesian Network from MAGIC
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81 out of 86 arcs from the original BN are significant.
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Genomic Selection and Genome-Wide Association Studies

Yellow Rust: What if We Fix (In)directly Related Alleles?

Yellow Rust (Field)
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Fixing 8 genes that are parents of YR.FIELD, then another 7 that are
parents of YR.GLASS, either not to be homozygotes for yellow rust

susceptibility or for yellow rust resistance.
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Genomic Selection and Genome-Wide Association Studies

Yellow Rust: Nodes Farther Away Can Help...
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Genomic Selection and Genome-Wide Association Studies

G3140: Can We Guess the Allele?

G3140
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If we have two varieties for which we scored low levels of fusarium
(0 to 2), and are among the top 25% yielding, but one is tall (top 25%)

and one is short (bottom 25%), which is the most probable allele for
gene G3140?
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Genomic Selection and Genome-Wide Association Studies

G3140: Information Travels Backwards...
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Markov Blankets for Feature

Selection
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Markov Blankets for Feature Selection

Markov Blankets can Preserve Prediction Power

Model ρCV ρCV,MB ∆

AGOUEB, YIELD (185/810 SNPs, 23%)

PLS 0.495 0.495 +0.000
Ridge 0.501 0.489 −0.012
LASSO 0.400 0.399 −0.001
Elastic Net 0.500 0.489 −0.011

MICE, GROWTH RATE (543/12.5K SNPs, 4%)

PLS 0.344 0.388 +0.044
Ridge 0.366 0.394 +0.028
LASSO 0.390 0.394 +0.004
Elastic Net 0.403 0.401 −0.001

MICE, WEIGHT (525/12.5K SNPs, 4%)

PLS 0.502 0.524 +0.022
Ridge 0.526 0.542 +0.016
LASSO 0.579 0.577 −0.001
Elastic Net 0.580 0.580 +0.000

RICE, SEEDS PER PANICLE (293/74K SNPs, 0.4%)

PLS 0.583 0.601 +0.018
Ridge 0.601 0.612 +0.011
LASSO 0.516 0.580 +0.064
Elastic Net 0.602 0.612 +0.010

Predictions based Markov blankets may
have the same precision as genome-
wide predictions for large α(' 0.15)
[25]. The data:

• AGOUEB (227 obs.): winter
barley, yield [30, 3, 21];

• MICE (1940 obs.): WTCCC
heterogeneous mouse
populations, more than 100
traits [27, 29];

• RICE (413 obs.): Oryza sativa
rice, 34 recorded traits [31].

We observe no loss in predictive power
after the Markov blanket feature selec-
tion. In fact, the reduced number of
SNPs increases numerical stability and
slightly improves the predictive power
of the models.
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Markov Blankets for Feature Selection

More Informative with the Same Number of SNPs

predictive correlation
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Blue dots are random subsets, red dots are Markov blankets, green dots
are single-SNP analyses, all with the same number of SNPs.
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Markov Blankets and Mapping Information
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Green ticks indicate the positions of all mapped SNPs for the RICE
data; blue bars indicate the frequency of the SNPs included in the

Markov blankets estimated from the rice data using cross-validation.
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Conclusions

Conclusions

• Bayesian networks provide an intuitive representation of the
relationships linking sets of phenotypes and genotypes, both
between and within each other.

• Given a few reasonable assumptions, we can learn a Bayesian
network for multiple trait GWAS and GS efficiently and
reusing state-of-the-art general-purpose algorithms.

• Once learned, Bayesian networks provide a flexible tool for
inference on both the markers and the phenotypes.

• Markov blankets are a valuable tool for feature selection, even
when we are not learning a complete Bayesian network.

Thanks!
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