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The Problem

A large part of the literature on the analysis of graphical models focuses
on the study of the parameters of local probability distributions (such as
conditional probabilities or partial correlations). However:

• Comparing models learned with different algorithms is difficult,
because they maximise different scores, use different estimators for
the parameters, work under different sets of hypotheses, etc.

• Unless the true global probability distribution is known it is difficult
to assess the quality of the estimated models.

• The few available measures of structural difference are completely
descriptive in nature (e.g. Hamming distance [5] or SHD [10]), and
are difficult to interpret.

• When learning causal graphical models often the focus is not on the
parameters but in the presence of particular patterns of edges in the
graph (e.g. [8]).
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Looking for a Solution

Focusing on graph structures G sidesteps some of these problems and
acknowledges causal graphical modelling literature [9].

0. We need to know more about the properties of priors P(G) and
posteriors P(G | D) distributions over the space of graphs,
preferably as a function of arc and edge sets, say P(G(E)) and
P(G(E) | D) with E = {(vi, vj), i 6= j} ∈ O(|V|2).

And then:

1. It would be good to have a measure(s) of spread for G, to assess the
noisiness of P(G(E) | D) and the informativeness of P(G(E)).

2. Using such a measure(s), it would be interesting to study the
convergence speed of structure learning algorithms and the influence
of their tuning parameters.

3. It would also be interesting to investigate how to use higher order
moments of P(G(E)) to define new priors.
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Edge Sets as Multivariate Bernoulli

Each edge eij in an undirected graph G = (V, E) has only two possible
states and therefore can be modelled as a Bernoulli random variable:

eij ∼ Eij =

{
1 if ei ∈ E
0 otherwise

.

The natural extension of this approach is to model any set of edges as a
multivariate Bernoulli random variable B ∼ Berk(p). B is uniquely
identified by the parameter set

p = {pI : I ⊆ {1, . . . , k}, i 6= ∅} , k =
|V|(|V| − 1)

2

which represents the dependence structure [6] among the marginal
distributions Bi ∼ Ber(pi), i = 1, . . . , k of the edges.

The parameter set p can be estimated using a large number m of
bootstrap samples as in Friedman et al. [2] or Imoto et al. [4], or MCMC
samples as in Friedman & Koller [3].
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Arc Sets as Multivariate Trinomial

Each arc aij in G = (V, A) has three possible states, and therefore it can
be modelled as a Trinomial random variable Aij :

aij ∼ Aij =


−1 if aij =←−aij = {vi ← vj}
0 if aij 6∈ A, denoted with åij

1 if aij = −→aij = {vi → vj}
.

As before, the natural extension to model any set of arcs is to use a
multivariate Trinomial random variable T ∼ Trik(p).

However:

• the acyclicity constraint of Bayesian networks makes deriving exact
results very difficult because it cannot be written in closed form;

• the score equivalence of most structure learning strategies makes
inference on Trik(p) tricky unless particular care is taken (i.e. both
possible orientations of many arcs result in equivalent probability
distributions, so the algorithms cannot choose between them).
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Second Order Properties of Berk(p) and Trik(p)

All the elements of the covariance matrix Σ of an edge set E are bounded,

pi ∈ [0, 1]⇒ σii = pi − p2i ∈
[
0,

1

4

]
⇒ σij ∈

[
0,

1

4

]
,

and similar bounds exist for the eigenvalues λ1, . . . , λk,

0 6 λi 6
k

4
and 0 6

k∑
i=1

λi 6
k

4
.

These bounds define a closed convex set in Rk,

L =

{
∆k−1(c) : c ∈

[
0,
k

4

]}
where ∆k−1(c) is the non-standard k − 1 simplex

∆k−1(c) =

{
(λ1, . . . , λk) ∈ Rk :

k∑
i=1

λi = c, λi > 0

}
.

Similar results hold for arc sets, with σii ∈ [0, 1] and λi ∈ [0, k].
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Minimum and Maximum Entropy

These results provide the foundation for characterising three cases
corresponding to different configurations of the probability mass in
P(G(E)) and P(G(E) | D):

• minimum entropy: the probability mass is concentrated on a single
graph structure. This is the best possible configuration for
P(G(E) | D), because only one edge set E (or one arc set A) has a
non-zero posterior probability.

• intermediate entropy: several graph structures have non-zero
probabilities. This is the case for informative priors P(G(E)) and for
the posteriors P(G(E) | D) resulting from real-world data sets.

• maximum entropy: all graph structures have the same probability.
This is the worst possible configuration for P(G(E) | D), because it
corresponds to a non-informative prior. In other words, the data D
do not provide any information useful in identifying a high-posterior
graph G.
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Properties of the Multivariate Bernoulli

In the minimum entropy case, only one configuration of edges E
has non-zero probability, which means that

pij =

{
1 if eij ∈ E
0 otherwise

and Σ = O

where O is the zero matrix.
The uniform distribution over G arising from the maximum
entropy case has been studied extensively in random graph theory
[1]; its two most relevant properties are that all edges eij are
independent and have pij = 1

2 . As a result, Σ = 1
4Ik; all edges

display their maximum possible variability, which along with the
fact that they are independent makes this distribution
non-informative for E as well as G(E).
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Properties of the Multivariate Trinomial

In the maximum entropy case we have that [7]

P(−→aij) = P(←−aij) '
1

4
+

1

4(n− 1)
→ 1

4

P(åij) '
1

2
− 1

2(n− 1)
→ 1

2

as n→∞, where n is the number of nodes of the graph. As a
result, we have that

E(Aij) = P(−→aij)− P(←−aij) = 0,

VAR(Aij) = 2 P(−→aij) '
1

2
+

1

2(n− 1)
→ 1

2
,

|COV(Aij , Akl)| = 2 [P(−→aij ,−→akl)− P(−→aij ,←−akl)]

/ 4

[
3

4
− 1

4(n− 1)

]2 [
1

4
+

1

4(n− 1)

]2
→ 9

64
.
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A Geometric Representation of Entropy in L

maximum entropy

minimum
entropy

The space of the eigenvalues L for two edges in an undirected graph.

Marco Scutari University College London



Univariate Measures of Variability

• The generalised variance, VARG(Σ) = det(Σ) =
∏k

i=1 λi ∈
[
0, 1

4k

]
.

• The total variance (or total variability)

VART (Σ) = tr (Σ) =

k∑
i=1

λi ∈
[
0,
k

4

]
.

• The squared Frobenius matrix norm

VARF (Σ) = |||Σ− k

4
Ik|||2F =

k∑
i=1

(
λi −

k

4

)2

∈
[
k(k − 1)2

16
,
k3

16

]
.

All of these measures can be rescaled to vary in the [0, 1] interval and to
associate high values to networks whose structure displays a high entropy.

The equivalent measures of variability for directed acyclic graphs can be
derived in the same way, and they can be similarly normalised.
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Structure Variability: Level Curves

maximum entropy
minimum
entropy

Level curves in L for VART (Σ).

maximum entropy
minimum
entropy

Level curves in L for VARF (Σ).
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Conclusions and Open Problems

• First and second order properties of P(G(E)) and P(G(E) | D)
can be often derived in closed form, and have a geometric
interpretation.

• First and second order properties of the uniform P(G(E)) on
directed acyclic graphs can be a basis for simulations and the
definition of new priors; could they translate to the uniform
prior over decomposable undirected graphs?

• Is there a way of identifying paths using covariance matrix
decompositions?

• Shrinking the covariance matrix affects P(eij) and P(aij) as
well, and it is possible to use it for regularisation purposes.
Applications to Bayesian model averaging and significant
edges/arcs identification?

Marco Scutari University College London



References I

B. Bollobás.

Random Graphs.
Cambridge University Press, 2nd edition, 2001.

N. Friedman, M. Goldszmidt, and A. Wyner.

Data Analysis with Bayesian Networks: A Bootstrap Approach.
In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence, pages 206–215.
Morgan Kaufmann, 1999.

N. Friedman and D. Koller.

Being Bayesian about Bayesian Network Structure: A Bayesian Approach to Structure Discovery in
Bayesian Networks.
Machine Learning, 50(1–2):95–126, 2003.

S. Imoto, S. Y. Kim, H. Shimodaira, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano.

Bootstrap Analysis of Gene Networks Based on Bayesian Networks and Nonparametric Regression.
Genome Informatics, 13:369–370, 2002.

D. Jungnickel.

Graphs, Networks and Algorithms.
Springer, 3rd edition, 2008.

F. Krummenauer.

Limit Theorems for Multivariate Discrete Distributions.
Metrika, 47(1):47–69, 1998.

Marco Scutari University College London



References II
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