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The Problem

The extent to which predictive models generalise from the populations used to
train them to distantly related target populations is an open question.

• The accuracy of such models is typically evaluated in the context of the
training population using cross-validation, implicitly assuming that any
new individual will have a similar general genetic layout [5, 7, 9].

• Strong focus on models’ ability to correctly estimate heritability, but it is
not clear how increases in explained genetic variance in the training
sample translate to the prediction of unobserved phenotypes; while
heritability provides an upper bound to predictive accuracy, it is rarely
attained [9].

• Causal variants with both large and small effects are often different
between different ethnic groups (in humans) or subspecies/families (in
plants and animals). This can dramatically reduce the performance of a
genomic prediction model because of the mismatch between the effect
sizes or the allele frequencies in the training and the target population,
even when population structure is taken into account [6, 7].
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Background

Here we concentrate on how to extrapolate a decay curve for predictive
accuracy as a function of a measure of genetic distance.

• We assume the training population is available and that the target
population for prediction is not.

• We concentrate on quantitative traits, and use predictive
correlation as a measure of predictive accuracy.

• We consider a maximum likelihood estimate of FST [2] to measure
the genetic distance between the training and target samples.
Average allelic correlation kinship [1] works just as well for this
purpose.

• We also implicitly assume that the training population has enough
genetic variability for the extrapolation to work, and that relevant
causal variants have reasonably high MAF.
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Extrapolating the Decay Curve

1. Produce a pair of minimally related subsets (i.e., with maximum FST) from
the training population using k-means, k = 2. The largest of these two
subsets will be used to train the genomic prediction model, and will be
considered the ancestral population for the purposes of computing FST; the
smallest will be the target used for prediction.

2. Compute (F̂
(0)
ST , ρ̂

(0)
D ) for the pair subsets, which will act as the far end of the

decay curve (in terms of genetic distance), using the elastic net.

3. For increasing values of m:

3.1 create a new pair of subsamples by swapping m varieties at random
between the training and the test subsamples from step 1;

3.2 fit a genomic prediction model on the new training subsample and use

it to predict the new target subsample, thus obtaining (F̂
(m)
ST , ρ̂

(m)
D ).

4. Estimate the decay curve from the set of (F̂
(m)
ST , ρ̂

(m)
D ) points using LOESS

[4] or a simple linear regression.
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The Data

We consider 3 data sets both with their original phenotypes and with synthetic
phenotypes (in the simulation studies).

• The TriticeaeGenome (TG) data [3], 376 registered wheat varieties from
France (210), Germany (90) and the UK (75), genotyped using 2.7k
DArT markers and known genes assays. Among the recorded traits we
consider grain yield, height, flowering time, and grain protein content.

• The heterogeneous mouse population [11], 1940 mice genotyped with 12k
SNPs; among the recorded traits, we consider growth rate and weight.
The data include a number of inbred families, the largest being F005 (287
mice), F008 (293), F010 (332) and F016 (309).

• The Human Genetic Diversity Panel (HGDP) [8], 1043 individuals from
Africa (151), America (108), Asia (435), Europe (167), the Middle East
(146) and Oceania (36) genotyped with 650k SNPs. No phenotypes are
available, so we only use chromosomes 1 and 2 (90k SNPs) for
simulations.
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Simulation: Genomic Selection (Few Causal Variants)

TG data, 200 varieties, 10 causal variants
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Simulation: Genomic Selection (More Causal Variants)

TG data, 200 varieties, 200 causal variants
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Simulation: Genomic Selection (More Training Samples)

TG data, 800 varieties, 200 causal variants
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Why is That Useful for Genomic Selection?

The main application of genomic prediction models to plants and animals is to
help in selecting individuals with desired phenotypes of commercial interest in
the context of breeding programs.

• Systematic selection to fix favourable variants in a pool of inbred
individuals results in target populations that are always different from the
training (e.g. future generations for later rounds of selection).

• Individuals from other populations are periodically included in the
program to maintain a suitable level of genetic variability; but they must
be evaluated first.

• Genomic selection models must be retrained every few generations to
maintain accuracy, but not too often for cost reasons.

Since it is often possible to gauge genetic distances in terms of FST, we can
read the expected predictive correlation from the curve for that F̂ST and take
informed decisions, e.g., is the model still accurate enough or is it time to
retrain it?
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Mean Kinship and FST Really are Interchangeable
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Simulation: Human Populations (Few Causal Variants)

HGDP data, 5 causal variants
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Simulation: Human Populations (More Causal Variants)

HGDP data, 2000 causal variants
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Why is That Useful in Human Genetics?

• Association mapping and trait prediction are often based on
samples collected from a single ethnic group – such as Caucasians
– but then results are referenced in more general contexts.

• Even assuming two populations are closely related, causal variants
differ in both frequency and effect size [6]. Lactose persistence is a
known example, it is driven by different variants in various way in
different human populations [10].

• Even when taking population structure into account, classic
cross-validation overestimates predictive accuracy because random
splits are at F̂ST ≈ 0 from each other.

It is important to take this in consideration to develop and to improve
the performance of medical diagnostics for general use.
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Real Data: Four Traits from the TG Data

TG data, Grain Yield (France)
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TG data, Height (France)
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TG data, Flowering Time (France)
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TG data, Grain Protein Content (France)
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Real Data: Growth from the WTCCC Mice Data

Mice data, Growth (F005)
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Mice data, Growth (F008)
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Mice data, Growth (F010)

F̂st

pr
ed

ic
tiv

e 
co

rr
el

at
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.02 0.04 0.06

●

F005
F008

F016

Mice data, Growth (F016)
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Real Data: Weight from the WTCCC Mice Data

Mice data, Weight (F005)
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Mice data, Weight (F008)
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Mice data, Weight (F010)
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Mice data, Weight (F016)
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Conclusions

• The target population is not necessarily available or even known when
training the model, we are often limited to extrapolating a decay
curve from the training population. A possible way to do that is
through clustering and random swapping; any genomic prediction
model can be plugged in.

• In the context of a breeding program the reliability of the decay curve
depends on the polygenic nature of the trait being predicted in
genomic selection; this is less true in human genetics.

• Being an extrapolation, the reliability of the curve decreases as FST

increases. Its linear interpolation has the same problem for ρ̂ ≈ 0.

• With different interpretations, such a decay curve has applications in
all of plant, animal and human genetics.
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