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Determining Statistically Significant Functional Relationships

The Problem

• Bayesian networks are often used to model the relationships
among the components of a biological or natural
phenomenon, such as in Holmes [3] and Neapolitan [10].

• In Friedman et al. [1] and Friedman et al. [2] statistically
significant functional relationships (FRs) were chosen as those
whose confidence was greater than a pre-defined threshold.

• confidence was defined as the frequency of a given FR across
the Bayesian networks learned from nonparametric bootstrap
samples.

• the value of the threshold has a dramatic impact on the
conclusions, and is especially challenging for small sample
sizes – see for example Husmeier [4].
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Determining Statistically Significant Functional Relationships

Estimating the Confidence Threshold

1. Generate a bootstrap sample Xr
m×n from the original data set

Xm×n and learn the structure of the Bayesian network from Xr
m×n.

Determine the corresponding PDAG Πr.

2. Generate Xp
m×n by randomly permuting the values in each column

of Xm×n and learn the structure of the Bayesian network from
Xp

m×n. Determine the corresponding PDAG Πp.

3. Repeat steps 1 and 2 g = 1, . . . , ns times to get the PDAGs Πr
g and

Πp
g.

4. Determine the confidence of the arcs Xi → Xj , i 6= j in the
resampled networks Πr

g,
{
frij

}
, and in the permuted networks Πp

g,{
fpij

}
.

5. an arc Xi → Xj is deemed significant if frij > fpgh, g, h = 1, . . . n,
g 6= h.
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Estimating the Confidence Threshold
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Estimating the Confidence Threshold

noise-floor
from the permutations

significant
arcs
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Determining Statistically Significant Functional Relationships

Properties of the Estimated Confidence Thresholds

The proposed algorithm is essentially a non-parametric bootstrap that
estimates the joint empirical distribution of the arc frequencies from the
data and compares it to the null distribution of arc frequencies obtained
from the randomly permuted counterpart. Note that:

• the correlation structure of the data is destroyed by the permutation,
so the edge frequencies fpgh essentially represent the noise-floor.

• the use of random permutations does not require additional
assumptions on the data since the gene expression measurement
across the replicate clones is generated independently.

• inference is exact conditionally on the observed sample – i.e. the
tests are invariant to the underlying statistical distribution of the
data, which may be partially or completely unknown.
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Determining Statistically Significant Functional Relationships

Tests on the ASIA Data Set

The proposed algorithm was first tested on data sampled from the
ASIA network using three different structure learning algorithms:
PC as implemented by Kalisch and Maechler [5], and GS and
IAMB as implemented by Scutari [11, 12].

1. generate the true PDAG of the network, Σ0.

2. identify significant arcs Σ1 from the given empirical sample
using one of the proposed algorithms.

3. identify significant arcs Σ2 from the given empirical sample
using a pre-defined threshold θ = (0.05, 0.25, 0.50, 0.75, 0.95).

4. compute true and false positive rates from (Σ0,Σ1) and
(Σ0,Σ2).
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Determining Statistically Significant Functional Relationships

The ASIA Data Set

BRONCHITIS

DYSPNOEA

EITHER TUBERCULOSIS OR LUNG CANCER

LUNG CANCER

POSITIVE X−RAY

SMOKING

TUBERCULOSIS

VISIT TO ASIA

The ASIA network from S. L. Lauritzen and D. J. Spiegelhalter [6].
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Determining Statistically Significant Functional Relationships

Results on the ASIA Data Set

1. the algorithm indeed has low FPR and high TPR.

2. the algorithm performs considerably better than θ = (0.50,
0.75, 0.95) for samples of size 5000 and 34 (the sample size of
the myogenic data set).

3. performance is comparable in the other cases for sample size
5000, but is still better for sample size 34.

So:

1. it is possible to choose a good value for θ, but it depends on
the data and the sample size.

2. it is difficult to pick a good, statistically motivated value of θ
in [0, 1]; the proposed algorithm does it automatically in a
data-driven way.
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Analysis of Osteoprogenitor Differentiation

Osteoprogenitor Differentiation

The probabilistic mechanism underlying osteoprogenitor
differentiation was established in Madras et al. [7] using 8 genes
(COLL1, OCN, ALP, BSP, FGFR1, PTH1R, PTHrP and PDGFRα)
and was also studied using Bayesian networks and a pre-defined
threshold in Nagarajan et al. [8].

There are two reasons why we chose to re-investigate this data:

• the experimental design of the osteoprogenitor differentiation
is similar to that of myogenic progenitor differentiation.

• using the proposed algorithm over real data shows that it may
really identify biologically relevant and novel FRs.
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Analysis of Osteoprogenitor Differentiation

Statistically Significant FRs
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Analysis of Myogenic Progenitors

The Problem

• transcriptions of regulatory (gene) networks controlling both
myogenic and adipogenic differentiation are still under active
investigation.

• myogenic and adipogenic differentiation pathways are typically
considered non-overlapping, but Taylor-Jones et al. [13] has
shown that myogenic progenitors from aged mice co-express
some aspects of both myogenic and adipogenic gene
programs.

• their balance is apparently regulated by Wnt signaling
according to Vertino et al. [14], but there have been few
efforts to understand the interactions between these two
networks.
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Analysis of Myogenic Progenitors

The Experimental Setting

The clonal gene expression data was generated from RNA isolated
from 34 clones of myogenic progenitors obtained from 24-months
old mice, cultured to confluence and allowed to differentiate for 24
hours. RT–PCR was used to quantify the expression of 12 genes:

• myogenic regulatory factors: Myo-D1, Myogenin and Myf-5.

• adipogenesis-related genes: FoxC2, DDIT3, C/EPB and
PPARγ.

• Wnt-related genes: Wnt5a and Lrp5.

• control genes: GAPDH, 18S and B2M.
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Statistically Significant FRs

control genes:
GAPDH, 18S, B2M
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Analysis of Myogenic Progenitors

Conclusions and Future Research

• While the FRs identified in the present study may not
necessarily represent direct relationships, they clearly establish
the orchestration of differentiation pathways in aged myogenic
progenitor differentiation and their interaction.

• The proposed resampling approach obviates the need for a
pre-defined threshold, and has been shown to work well even
at small sample sizes.

• Still missing: multiple testing corrections in the structure
learning algorithm to control family-wise error rate and/or
false-discovery rate and comparing the network structure
obtained on the aged myoblasts to those obtained on adult
myoblasts.
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Thank you for attending.
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