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Introduction

Graphical models

Graphical models are defined by the combination of:

• a network structure, either an undirected (Markov networks
[2], gene association networks, correlation networks, etc.) or a
directed graph (Bayesian networks [7]). Each node
corresponds to a random variable.

• a global probability distribution which can be factorized into a
set of local probability distributions (one for each node)
according to the topology of the graph.

This allows a compact representation of the joint distribution of
large numbers of random variables and simplifies inference on their
parameters.
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Introduction

A simple Bayesian network: Watson’s lawn
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Introduction

The problem

Almost all literature on graphical models focuses on the study of
the parameters of the local probability distributions (such as
conditional probabilities or partial linear correlations).

• this makes comparing models learned with different algorithms
difficult, because they maximize different scores, use different
estimators for the parameters, work under different sets of
hypotheses, etc.

• unless the true global probability distribution is known it’s
difficult to assess the quality of the estimated models.

• the few measures of structural difference are completely
descriptive in nature (i.e. Hamming distance [6] or SHD [10]),
and have no easy interpretation.
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Modeling undirected network
structures
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Modeling undirected network structures

Edges and univariate Bernoulli random variables

Each edge ei in an undirected graph U = (V, E) has only two
possible states,

ei =

{
1 if ei ∈ E
0 otherwise

.

Therefore it can be modeled as a Bernoulli random variable Ei:

ei ∼ Ei =

{
1 ei ∈ E with probability pi

0 ei 6∈ E with probability 1− pi

where pi is the probability that the edge ei belongs to the graph.
Let’s denote it as ei ∼ Ber(pi).
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Modeling undirected network structures

Edge sets as multivariate Bernoulli

The natural extension of this approach is to model any set W of
edges (such as E or {V ×V}) as a multivariate Bernoulli random
variable W ∼ Berk(p). It is uniquely identified by the parameter
set

p = {pw : w ⊆W,w 6= ∅} ,

which represents the dependence structure [8] among the marginal
distributions Wi ∼ Ber(pi), i = 1, . . . , k of the edges.
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Modeling undirected network structures

Estimation of the parameters of W

The parameter set p of W can be estimated via bootstrap [3] as
in Friedman et al. [4] or Imoto et al. [5]:

1. For b = 1, 2, . . . ,m

1.1 re-sample a new data set D∗b from the original data D using
either parametric or nonparametric bootstrap.

1.2 learn a graphical model Ub = (V, Eb) from D∗b.

2. Estimate the probability of each subset w of W as

p̂w =
1

m

m∑
b=1

I{w⊆Eb}(Ub).
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Properties of the multivariate
Bernoulli distribution
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Properties of the multivariate Bernoulli distribution

Moments

The first two moments of a multivariate Bernoulli variable
W = [W1,W2, . . . ,Wk] are

P = [E(W1), . . . ,E(Wk)]T Σ = [σij ] = [COV(Wi,Wj)]

where

E(Wi) = pi

COV(Wi,Wj) = E(WiWj)− E(Wi)E(Wj) = pij − pipj
VAR(Wi) = COV(Wi,Wi) = pi − p2

i

and can be estimated using

p̂i =
1

m

m∑
b=1

I{ei∈Eb}(Ub) and p̂ij =
1

m

m∑
b=1

I{ei∈Eb,ej∈Eb}(Ub).
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Properties of the multivariate Bernoulli distribution

Uncorrelation and independence

Theorem
Let Bi and Bj be two Bernoulli random variables. Then Bi and Bj

are independent if and only if their covariance is zero:

Bi ⊥⊥ Bj ⇐⇒ COV(Bi, Bj) = 0

Theorem
Let B = [B1, B2, . . . , Bk]T and C = [C1, C2, . . . , Cl]

T , k, l ∈ N be
two multivariate Bernoulli random variables. Then B and C are
independent if and only if

B ⊥⊥ C⇐⇒ COV(B,C) = O

where O is the zero matrix.
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Properties of the multivariate Bernoulli distribution

Uncorrelation and independence (an example)

Let B = [B1 B2 B3]T = B1 + B2; then we have

COV(B1,B2) = E

 0
B2

0

 [B1 0 B3

]− E

 0
B2

0

E
([
B1 0 B3

])

= E

 0 0 0
B1B2 0 B2B3

0 0 0

−
 0
p2
0

 [p1 0 p3
]

=

 0 0 0
p12 0 p23
0 0 0

−
 0 0 0
p1p2 0 p2p3

0 0 0

 =

=

 0 0 0
p12 − p1p2 0 p23 − p2p3

0 0 0

 = O⇔ B1 ⊥⊥ B2
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Properties of the multivariate Bernoulli distribution

Constraints on the covariance matrix Σ

The marginal variances of the edges are bounded, because

pi ∈ [0, 1] =⇒ σii = pi − p2
i ∈

[
0,

1

4

]
.

The maximum is attained for pi = 1
2 , and the minimum for both

pi = 0 and pi = 1. For the Cauchy-Schwartz theorem [1] then
covariances are bounded too:

0 6 σ2
ij 6 σiiσjj 6

1

16
=⇒ |σij | ∈

[
0,

1

4

]
.

These result in similar bounds on the eigenvalues λ1, . . . , λk of Σ,

0 6 λi 6
k

4
and 0 6

k∑
i=1

λi 6
k

4
.
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Properties of the multivariate Bernoulli distribution

Constraints on Σ: a graphical representation

Σ1 =
1

25

[
6 1
1 6

]
=

[
0.24 0.04
0.04 0.24

]
Σ2 =

1

625

[
66 −21
−21 126

]
=

[
0.1056 −0.0336
−0.0336 0.2016

]
Σ3 =

1

625

[
66 91
91 126

]
=

[
0.1056 0.1456
0.1456 0.2016

]
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Measures of Structure
Variability
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Measures of Structure Variability

Entropy of the bootstrapped models

Let’s consider the graphical models U1, . . . ,Um learned from the
bootstrap samples.

• minimum entropy: all the models learned from the bootstrap
samples have the same structure. In this case:

pi =

{
1 if ei ∈ E
0 otherwise

and Σ = O.

• intermediate entropy: several models are observed with different
frequencies mb,

∑
mb = m, so

p̂i =
1

m

∑
b : ei∈Eb

mb and p̂ij =
1

m

∑
b : ei∈Eb,ej∈Eb

mb.

• maximum entropy: all possible models appear with the same
frequency, which results in

pi =
1

2
and Σ =

1

4
Ik.
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Measures of Structure Variability

Entropy of the bootstrapped models

maximum entropy

minimum
entropy
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Measures of Structure Variability

Univariate measures of variability

• the generalized variance

VARG(Σ) = det(Σ) =

k∏
i=1

λi ∈
[
0,

1

4k

]
• the total variance

VART (Σ) = tr (Σ) =

k∑
i=1

λi ∈
[
0,
k

4

]
• the squared Frobenius matrix norm

VARN (Σ) = |||Σ−k
4
Ik|||2F =

k∑
i=1

(
λi −

k

4

)2

∈
[
k(k − 1)2

16
,
k3

16

]
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Measures of Structure Variability

Measures of structure variability

VART (Σ) =
VART (Σ)

maxΣ VART (Σ)
=

4

k
VART (Σ)

VARG(Σ) =
VARG(Σ)

maxΣ VARG(Σ)
= 4kVARG(Σ)

VARN (Σ) =
maxΣ VARN (Σ)− VARN (Σ)

maxΣ VARN (Σ)−minΣ VARN (Σ)

=
k3 − 16VARN (Σ)

k(2k − 1)

All of them vary in the [0, 1] interval and associate high values to
networks whose structure display a high entropy in the bootstrap
samples.

Marco Scutari University of Padova



Measures of Structure Variability

Structure variability (total variance)

maximum entropy
minimum
entropy
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Measures of Structure Variability

Structure variability (Frobenius norm)

maximum entropy
minimum
entropy
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Measures of Structure Variability

Applications

• compare the performance of different combinations of learning
algorithms and network scores/independence tests on the
same data.

• study the performance of an algorithm at different sample
sizes by changing the size bootstrap samples. The simplest
way is to test the hypothesis

H0 : Σ =
1

4
Ik H1 : Σ 6= 1

4
Ik

using either parametric tests or parametric bootstrap.

• apply many techniques from classical multivariate statistics
(such as principal components), graph theory (path analysis)
and linear algebra (matrix decompositions).
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Measures of Structure Variability

Comparing learning algorithms’ performance

sample size
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Measures of Structure Variability

Comparing statistical tests’ performance

sample size
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Further Applications
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Further Applications

Distances in the space of graphs

The availability of the first two moments of the random vector E
allows the computation of the Mahalanobis distance

DU∗ = (E∗ − E(E))TΣ−1(E∗ − E(E))

of any possible graphical structure U∗ = (W, E∗) with the same
vertex set. This method works even when the true network
structure is not known, and gives a better representation of the
geometry of the space of the graphs than Hamming distance.
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Further Applications

Extensions to directed graphs

Each arc ai = (vj , vk) in a directed graph G = (V, A) has three
possible states

ai =


−1 if ai = {vj ← vk} (backward)

0 if ai 6∈ A
1 if ai = {vj → vk} (forward)

and therefore it can be modeled as a trinomial random variable Ai,
which is essentially a multinomial random variable with three
states. Variability measures (and their normalized variants) can be
extended from the undirected case as

VAR(Ai) = VAR(Ei) + 4P(forward)P(backward) ∈ [0, 1]
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Thank you.

Marco Scutari University of Padova



References

Marco Scutari University of Padova



References

References I

R. B. Ash.
Probability and Measure Theory.
Academic Press, 2nd edition, 2000.

D. I. Edwards.
Introduction to Graphical Modelling.
Springer, 2000.

B. Efron and R. Tibshirani.
An Introduction to the Bootstrap.
Chapman & Hall, 1993.

Marco Scutari University of Padova



References

References II

Nir Friedman, Moises Goldszmidt, and Abraham Wyner.
Data Analysis with Bayesian Networks: A Bootstrap
Approach.
In Proceedings of the 15th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-99), pages 206 – 215. Morgan
Kaufmann, 1999.

S. Imoto, S. Y. Kim, H. Shimodaira, S. Aburatani, K. Tashiro,
S. Kuhara, and S. Miyano.
Bootstrap Analysis of Gene Networks Based on Bayesian
Networks and Nonparametric Regression.
Genome Informatics, 13:369–370, 2002.

D. Jungnickel.
Graphs, Networks and Algorithms.
Springer, 3rd edition, 2008.

Marco Scutari University of Padova



References

References III

K. Korb and A. Nicholson.
Bayesian Artificial Intelligence.
Chapman and Hall, 2004.

F. Krummenauer.
Limit Theorems for Multivariate Discrete Distributions.
Metrika, 47(1):47 – 69, 1998.

M. Scutari.
Structure Variability in Bayesian Networks.
Working Paper 13-2009, Department of Statistical Sciences,
University of Padova, 2009.
Deposited in arXiv in the Statistics - Methodology archive,
available from http://arxiv.org/abs/0909.1685.

Marco Scutari University of Padova



References

References IV

I. Tsamardinos, L. E. Brown, and C. F. Aliferis.
The Max-Min Hill-Climbing Bayesian Network Structure
Learning Algorithm.
Machine Learning, 65(1):31–78, 2006.

Marco Scutari University of Padova


	Introduction
	Modeling undirected network structures
	Properties of the multivariate Bernoulli distribution
	Measures of Structure Variability
	Further Applications
	Thank you.
	References

