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Bayesian Networks and Genomic Prediction

Multi-Trait Genomic Predictions

The availability of dense genome markers and of simultaneous
measurements of multiple traits makes it possible to:

• better elucidate genetic architectures in genome-wide association
studies; and to

• predict complex traits with low heritabilities in genomic selection
programs.

For this purpose, we need statistical models that provide:

• an intuitive representation of the relationships linking both traits
and markers;

• competitive predictive accuracy;

• enough flexibility to accommodate heterogeneous variables such as
environmental effects;

• easy inference on both markers and traits.
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Many Approaches Based on Random Effects Models...

Multiple-Trait Genomic Selection Methods Increase
Genetic Value Prediction Accuracy
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Bayesian Networks and Genomic Prediction

... and My Take using Bayesian Networks

Parents Children

Children's other parents
(Spouses)

Markov blanket of trait T1

Bayesian networks [4, 10] encode dependencies
using a directed acyclic graph, which dictates
how the joint distribution of traits and markers
factorizes into local distributions: each one is
associated with a node Xi and depends only on
its parents ΠXi

,

P(X) =

p∏
i=1

P(Xi | ΠXi).

In addition, we can visually identify the Markov
blanket of each node Xi (the set of nodes that
completely separates Xi from the rest of the
graph, and thus includes all the knowledge
needed to do inference on Xi).
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Bayesian Networks and Genomic Prediction

Bayesian Networks for GS and GWAS

From the definition, if we have a set of traits and markers for each variety, all
we need for GS and GWAS are the Markov blankets of the traits [8]. Using
common sense, we can make some additional assumptions:

• traits can depend on markers, but not vice versa;

• dependencies between traits should follow the order of the respective
measurements (e.g. longitudinal traits, traits measured before and after
harvest, etc.);

• dependencies in multiple omics data (e.g. SNP + gene expression or SNPs
+ methylation) should follow the central dogma of molecular biology.

Most markers can be discarded when the Markov blankets are learned. Only
those that are parents of one or more traits are retained; all other markers’
effects are indirect and redundant at that point.

Assumptions on the direction of the dependencies allow to reduce Markov
blankets learning to learning the parents and the children of each trait, which is
a much simpler task.
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Bayesian Networks and Genomic Prediction

Inference on Traits and Markers

Posterior and causal inference have been
studied in depth for Bayesian networks –
see [6] from Judea Pearl. Both boil down
to computing the probability of some
event of interest under different conditions
after modifying the corresponding local
distributions:

• with exact algorithms such as belief
propagation or

• with approximate algorithms such as
likelihood weighting.

As a result the question of how to learn
the network structure remains the most
interesting point from an applied research
perspective.

Posterior probability given T

Causal intervention on T

1

1

Marco Scutari University of Oxford



Learning the Model

Marco Scutari University of Oxford



Learning the Model

Parametric Assumptions

In the spirit of classic additive models, we use a Gaussian Bayesian network and
assume the joint distribution of traits and markers is multivariate normal. Then
the local distribution of each trait Ti is a linear regression model

Ti = µTi
+ ΠTi

βTi
+ εTi

= µTi
+ TjβTj

+ . . .+ TkβTk︸ ︷︷ ︸
traits

+GlβGl
+ . . .+GmβGm︸ ︷︷ ︸

markers

+εTi
, εTi

∼ N(0, σ2
Ti

I)

and the local distribution of each marker is likewise

Gi = µGi
+ ΠGi

βGi
+ εGi

=

= µGi
+GlβGl

+ . . .+GmβGm︸ ︷︷ ︸
markers

+εGi
, εGi

∼ N(0, σ2
Gi

I).

in which the regressors (ΠTi or ΠGi) are treated as fixed effects. Each ΠGi

contains the markers in LD with Gi since COR(Gi, Gl|ΠGi
) 6= 0⇔ βGl

6= 0.
This is also intuitively true for markers that are children of Gi, as LD is
symmetric.
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Learning the Model

Learning the Bayesian Network

1. Feature Selection.

1.1 Independently learn the parents and the children of each trait with the
SI-HITON-PC algorithm [1]; children can only be other traits, parents are
mostly markers, spouses can be either. Both are selected using the exact
Student’s t test for partial correlations.

1.2 Drop all the markers that are not parents of any trait.

Parents and children of T1 Parents and children of T2 Parents and children of T3 Parents and children of T4

Redundant markers that are not in the
Markov blanket of any trait
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Learning the Model

Learning the Bayesian Network

2. Structure Learning. Learn the structure of the network from the nodes
selected in the previous step, setting the directions of the arcs according to
the assumptions above. The optimal structure can be identified with a
suitable goodness-of-fit criterion such as BIC. This follows the spirit of other
hybrid approaches [3, 12], that have shown to be well-performing in
literature.

Empty network Learned network
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Learning the Model

Learning the Bayesian Network

3. Parameter Learning. Learn the parameters: each local distribution in a linear
regression and the global distribution is a hierarchical linear model. Typically
least squares works well because SI-HITON-PC selects sets of weakly
correlated parents; ridge regression can be used otherwise.

Learned network Local distributions

Marco Scutari University of Oxford



Learning the Model

The Semi-Interleaved HITON-PC Algorithm

Input: each trait Ti in turn, other traits (Tj) and all markers (Gl), a
significance threshold α.
Output: the set CPC parents and children of Ti in the Bayesian network.

1. Perform a marginal independence test between Ti and each Tj (Ti ⊥⊥ Tj)
and Gl (Ti ⊥⊥ Gl) in turn.

2. Discard all Tj and Gl whose p-values are greater than α.

3. Set CPC = {∅}.

4. For each the Tj and Gl in order of increasing p-value:

4.1 Perform a conditional independence test between Ti and Tj/Gl

conditional on all possible subsets Z of the current CPC
(Ti ⊥⊥ Tj | Z ⊆ CPC or Ti ⊥⊥ Gl | Z ⊆ CPC).

4.2 If the p-value is smaller than α for all subsets then
CPC = CPC ∪ {Tj} or CPC = CPC ∪ {Gl}.

NOTE: the algorithm is defined for a generic independence test, you can plug
in any test that is appropriate for the data.
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Learning the Model

Model Averaging and Assessing Predictive Accuracy

We perform all the above in 10 runs of
10-fold cross-validation to

• assess predictive accuracy with e.g.
predictive correlation;

• obtain a set of networks to produce
an averaged, de-noised consensus
network [9]. The threshold for arc
strength is estimated from the data.

As a side effect we get a model-agnostic
arc strength estimate: the frequency of
each arc in the 10× 10 Bayesian
networks.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

arc strength

E
C

D
F

(a
rc

 s
tr

en
gt

h)

significant
arcs

es
tim

at
ed

 th
re

sh
ol

d

0.0 0.2 0.4 0.6 0.8 1.0

Marco Scutari University of Oxford



Learning the Model

Computing a Threshold for Arc Strength

A simple way of computing such a threshold is by considering that Bayesian
network learning is consistent, so the empirical distribution function of arc
strengths converges to a single-step distribution function as n→∞. The
height of that step is the threshold, which can be estimated by minimizing the
area between the empirical and asymptotic distribution functions.

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
C

D
F

(a
rc

 s
tr

en
gt

h)

0.0 0.2 0.4 0.6 0.8 1.0

arc strength

0.0 0.2 0.4 0.6 0.8 1.0

Marco Scutari University of Oxford



MAGIC Populations

Marco Scutari University of Oxford



MAGIC Populations

MAGIC Populations: Wheat and Rice

Multiparent advanced generation inter-cross (MAGIC) populations are
ideal for learning complex models because of their high genetic
recombination, diversity and large sample size. Here we consider two:

• A winter wheat population [5, 7] with 721 varieties
and 16K markers with 7 phenotypes.

• An indica rice population [unpublished] with 1087
varieties and 4K markers with 10 phenotypes.

Phenotypic traits include flowering time (FT), height (HT), yield
(YLD), a number of disease scores (YR, MIL, FUS; BROWN); and, in
the case of rice, physical and quality traits for the grains (GL, GW,
AMY, GT, CHALK).
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MAGIC Populations

WHEAT: a Bayesian Network (44 nodes, 66 arcs)
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MAGIC Populations

WHEAT: Predictive Performance from Cross-Validation
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ρG = predictive correlation given all SNPs in the model.
ρC = predictive correlation given putative causal effects identified by the Bayesian network.

On average, GBLUP has ρ = 0.18, ENET has ρ = 0.34, and BN has ρC = 0.37, ρG = 0.33.
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MAGIC Populations

RICE: a Bayesian Network (64 nodes, 102 arcs)
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MAGIC Populations

RICE: Predictive Performance from Cross-Validation
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On average, GBLUP has ρ = 0.48, ENET has ρ = 0.54, and BN has ρC = 0.56, ρG = 0.53.
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MAGIC Populations

Predicting Traits for New Individuals

We can predict the traits:

1. from the averaged consensus
network;

2. from each of the 10× 10 networks
we learn during cross-validation,
and average the predictions for
each new individual and trait.

Option 2. almost always provides better
accuracy than option 1., especially for
polygenic traits; 10× 10 networks can
cover the genome much better, and we
have to learn them anyway.

So: averaged network for interpretation,
individual networks for predictions.
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MAGIC Populations

A Few Notes on Learning Bayesian Networks

• Bayesian networks are largely self-correcting for multiplicity, leaving the
type-I error α as the only tuning parameter.

• Bayesian networks try to determine the direction of relationships (unlike
random effects models and undirected graphical models) and to address
confounding.

• SNPs that are associated with more than one trait (pleiotropic effects) are
included in the Bayesian network even when association with just a single
trait is detected; at that point they can be linked to all the relevant traits.
On the other hand, SNPs that are jointly associated but individually
independent from a trait (epistatic effects) are not likely to be included.

• Performing feature selection impacts the ability of predicting traits
influenced by many small genetic effects.
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Inference and Interpretation

Causal Relationships Between Traits

One of the key properties of Bayesian networks is
their ability of capturing the direction of the causal
relationships among traits in the absence of latent
confounders (the experimental design behind the
data collection should take care of a number of
them).

It works because each trait will have at least one
incoming arc from the markers, say Gl → Tj , and
then (Gl →)Tj ← Tk and (Gl →)Tj → Tk are not
probabilistically equivalent [4]. So the network can

• suggest the direction of novel relationships;

• confirm the direction of known relationships,
troubleshooting the experimental design and
data collection.

HT
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Inference and Interpretation

Spotting Confounding Effects

HT

G2570

G832

G1896

G2953

YLD

FUS

G2835(WHEAT) Traits can interact in complex ways that may not
be obvious when they are studied individually,
but that can be explained by considering
neighboring variables in the network.
An example: in the WHEAT data, the difference
in the mean YLD between the bottom and top
quartiles of the FUS disease scores is +0.08.

So apparently FUS is associated with increased YLD! What we are actually
measuring is the confounding effect of HT (FUS ← HT → YLD); conditional
on each quartile of HT, FUS has a negative effect on YLD ranging from -0.04
to -0.06. This is reassuring since it is known [11] that susceptibility to
fusarium is positively related to HT, which in turn affects YLD [2].
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Inference and Interpretation

Disentangling Pleiotropic Effects

When a marker is shown to be associated to
multiple traits in a GWAS, we should separate
its direct and indirect effects on each of the
traits. (Especially if the traits themselves are
linked!)
Take for example G1533 in the RICE data set:
it is putative causal for YLD, HT and FT.

HT

FT

G4432

G1533

G4109

YLD

(RICE)

• The difference in mean between the two homozygotes is +4.5cm in HT, +2.28 weeks in FT
and +0.28 t/ha in YLD.

• Controlling for YLD and FT, the difference for HT halves (+2.1cm);

• Controlling for YLD and HT, the difference for FT is about the same (+2.3 weeks);

• Controlling for HT and FT the difference for YLD halves (+0.16 t/ha).

So, the model suggests the marker is causal for FT and that the effect on the
other traits is partly indirect. This agrees from the p-values from an
independent GWAS study (FT: 5.87e-28 < YLD: 4.18e-10, HT:1e-11).
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Inference and Interpretation

Identifying Causal (Sets of) Markers

Compared to additive regression models, Bayesian networks make it trivial to
compute:

• posterior probability of association for a marker and a trait after all the
other markers and traits are taken into account to rule out linkage
disequilibrium, confounding, pleiotropy, etc.;

• expected allele counts nLOW and nHIGH for a marker and low/high values
of a set of traits (nLOW − nHIGH should be large if the marker tags a
causal variant and thus should show which allele is favorable).

G1778 G3872 G4529 G1440 G5794
small grains 0.00 0.78 0.29 0.16 0.74
large grains 2.00 0.47 0.63 0.35 0.12

G4668 G2764 G3927 G3992 G4432
small grains 0.24 0.29 0.18 0.09 0.00
large grains 0.17 0.00 0.62 0.29 0.82

small grains = bottom 10% GL, bottom 10% GW in the RICE data.
large grains = top 10% GL, top 10% GW.
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Conclusions

Conclusions

• Bayesian networks provide a model for qualitative and quantitative reasoning
that is easily interpretable thanks to its graphical nature.

• They also provide competitive predictive accuracy for multi-trait modeling,
and can easily accommodate additional variables (experimental factors,
different omics data, etc.).

• Causal inference has been thoroughly explored in the literature and can be
used to address confounding and disambiguate the effects of pleiotropic
markers.

• Posterior inference is easily performed by simulation for both traits and
markers.
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