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Bayesian Network Structure Learning

Learning a BN B = (G,Θ) from a data set D is performed in two steps:

P(B | D) = P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

In a Bayesian setting structure learning consists in finding the DAG with the
best P(G | D) (BIC [5] is a common alternative) with some heuristic search
algorithm. We can decompose P(G | D) into

P(G | D) ∝ P(G) P(D | G) = P(G)

∫
P(D | G,Θ) P(Θ | G)dΘ

where P(G) is the prior distribution over the space of the DAGs and P(D | G)
is the marginal likelihood of the data given G averaged over all possible
parameter sets Θ; and then

P(D | G) =
N∏
i=1

[∫
P(Xi | ΠXi ,ΘXi) P(ΘXi | ΠXi)dΘXi

]
.

where ΠXi are the parents of Xi in G.
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The Bayesian Dirichlet Marginal Likelihood

If D contains no missing values and assuming:

� a Dirichlet conjugate prior (Xi | ΠXi
∼ Multinomial(ΘXi

| ΠXi
) and

ΘXi | ΠXi ∼ Dirichlet(αijk),
∑

jk αijk = αi the imaginary sample size);

� positivity (all conditional probabilties πijk > 0);

� parameter independence (πijk for different parent configurations are
independent) and modularity (πijk in different nodes are independent);

Heckerman et al. [2] derived a closed form expression for P(D | G):

BD(G,D;α) =

N∏
i=1

BD(Xi,ΠXi
;αi) =

=

N∏
i=1

qi∏
j=1

[
Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)

]

where ri is the number of states of Xi; qi is the number of configurations of
ΠXi ; nij =

∑
k nijk; and αij =

∑
k αijk.
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Bayesian Dirichlet Equivalent Uniform (BDeu)

The most common implementation of BD assumes αijk = α/(riqi), αi = α
and is known from [2] as the Bayesian Dirichlet equivalent uniform (BDeu)
marginal likelihood. The uniform prior over the parameters was justified by the
lack of prior knowledge and widely assumed to be non-informative.

However, there is ample evidence that this is a problematic choice:

� The prior is actually not uninformative.

� MAP DAGs selected using BDeu are highly sensitive to the choice of α
and can have markedly different number of arcs even for reasonable α [8].

� In the limits α→ 0 and α→∞ it is possible to obtain both very simple
and very complex DAGs, and model comparison may be inconsistent for
small D and small α [8, 10].

� The sparseness of the MAP network is determined by a complex
interaction between α and D [10, 13].

� There are formal proofs of all this in [12, 13].
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Exhibits A and B
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Exhibit A

The sample frequencies (nijk) for X | ΠX are:

Z,W
0, 0 1, 0 0, 1 1, 1

X
0 2 1 1 2
1 1 2 2 1

and those for X | ΠX ∪ Y are as follows.

Z,W, Y
0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 0 0, 0, 1 1, 0, 1 0, 1, 1 1, 1, 1

X
0 2 1 1 0 0 0 0 2
1 1 2 2 0 0 0 0 1

Even though X | ΠX and X | ΠX ∪ Y have the same entropy,

H(X | ΠX) = H(X | ΠX ∪ Y ) = 4

[
−1

3
log

1

3
− 2

3
log

2

3

]
= 2.546 ...
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Exhibit A

... G− has a higher entropy than G+ a posteriori ...

H(X | ΠX ;α) = 4

[
−1 + 1/8

3 + 1/4
log

1 + 1/8

3 + 1/4
− 2 + 1/8

3 + 1/4
log

2 + 1/8

3 + 1/4

]
= 2.580

H(X | ΠX ∪ Y ;α) = 4

[
−1 + 1/16

3 + 1/8
log

1 + 1/16

3 + 1/8
− 2 + 1/16

3 + 1/8
log

2 + 1/16

3 + 1/8

]
= 2.564

... and BDeu with α = 1 chooses accordingly, and things fortunately work out:

BDeu(X | ΠX) =

(
Γ(1/4)

Γ(1/4 + 3)

[
Γ(1/8 + 2)

Γ(1/8)
· Γ(1/8 + 1)

Γ(1/8)

])4

= 3.906× 10−7,

BDeu(X | ΠX ∪ Y ) =

(
Γ(1/8)

Γ(1/8 + 3)

[
Γ(1/16 + 2)

Γ(1/16)
· Γ(1/16 + 1)

Γ(1/16)

])4

= 3.721× 10−8.

Marco Scutari University of Oxford



Exhibit B

The sample frequencies for X | ΠX are:

Z,W
0, 0 1, 0 0, 1 1, 1

X
0 3 0 0 3
1 0 3 3 0

and those for X | ΠX ∪ Y are as follows.

Z,W, Y
0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 0 0, 0, 1 1, 0, 1 0, 1, 1 1, 1, 1

X
0 3 0 0 0 0 0 0 3
1 0 3 3 0 0 0 0 0

The conditional entropy of X is equal to zero for both G+ and G−,
since the value of X is completely determined by the configurations of
its parents in both cases.
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Exhibit B

Again, the posterior entropies for G+ and G− differ:

H(X | ΠX ;α) = 4

[
−0 + 1/8

3 + 1/4
log

0 + 1/8

3 + 1/4
− 3 + 1/8

3 + 1/4
log

3 + 1/8

3 + 1/4

]
= 0.652,

H(X | ΠX ∪ Y ;α) = 4

[
−0 + 1/16

3 + 1/8
log

0 + 1/16

3 + 1/8
− 3 + 1/16

3 + 1/8
log

3 + 1/16

3 + 1/8

]
= 0.392.

However, BDeu with α = 1 yields

BDeu(X | ΠX) =

(
Γ(1/4)

Γ(1/4 + 3)

[
Γ(1/8 + 3)

Γ(1/8)
·
�
�
�Γ(1/8)

Γ(1/8)

])4

= 0.032,

BDeu(X | ΠX ∪ Y ) =

(
Γ(1/8)

Γ(1/8 + 3)

[
Γ(1/16 + 3)

Γ(1/16)
·
�
�

��Γ(1/16)

Γ(1/16)

])4

= 0.044,

preferring G+ over G− even though the additional arc Y → X does not provide
any additional information on the distribution of X, and even though 4 out of
8 conditional distributions in X | ΠX ∪ Y are not observed at all in the data.
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Better Than BDeu: Bayesian Dirichlet Sparse (BDs)

If the positivity assumption is violated or the sample size n is small, there may
be configurations of some ΠXi

that are not observed in D.

BDeu(Xi,ΠXi ;α) =

=
∏

j:nij=0

[
���������Γ(riα

∗)

Γ(riα∗)

ri∏
k=1

Γ(α∗)

Γ(α∗)

] ∏
j:nij>0

[
Γ(riα

∗)

Γ(riα∗ + nij)

ri∏
k=1

Γ(α∗ + nijk)

Γ(α∗)

]
,

so the effective imaginary sample size decreases as the number of unobserved
parents configurations increases. We can prevent that by replacing αijk with

α̃ijk =

{
α/(riq̃i) if nij > 0

0 otherwise
, q̃i = {number of ΠXi

such that nij > 0}

and we plug it in BD instead of αijk = α/(riqi) to obtain BDs.

Then BDs(Xi,ΠXi ;α) = BDeu(Xi,ΠXi ;αqi/q̃i).

Marco Scutari University of Oxford



BDeu and BDs Compared

Cells that correspond to (Xi,ΠXi) combinations that are not observed
in the data are in red, observed combinations are in green.
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Exhibits A and B, Once More

BDs does not suffer from the bias arising from q̃i < qi and it correctly assigns
the same score to G− and G+ in both examples,

BDs(X | ΠX) = BDs(X | ΠX ∪ Y ) = 3.906× 10−7.

BDs(X | ΠX) = BDs(X | ΠX ∪ Y ) = 0.03262.

following the maximum entropy principle.
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Entropy and BDeu

In a Bayesian setting, the conditional entropy H(·) of X | ΠX given a
uniform Dirichlet prior with imaginary sample size α over the cell
probabilities is

H(X | ΠX ;α) = −
∑

j:nij>0

ri∑
k=1

p
(α∗i )

ij|k log p
(α∗i )

ij|k with p
(α∗i )

ij|k =
α∗i + nijk
riα∗i + nij

.

and H(X | ΠX ;α) > H(X | ΠX ;β) if α > β and X | ΠX is not a
uniform distribution.

Let α/(riqi)→ 0 and let α > β > 0. Then

BDeu(X | ΠX ;α) > BDeu(X | ΠX ;β) if d
(Xi,G)
EP > 0,

BDeu(X | ΠX ;α) =

(
1

ri

)q̃i
if d

(Xi,G)
EP = 0.
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To Sum It Up in a Theorem

Let G+ and G− be two DAGs differing from a single arc Xj → Xi, and
let α/(riqi)→ 0. Then the Bayes factor computed using BDs
corresponds to the Bayes factor computed using BDeu weighted by the
following implicit prior ratio:

P(G+)

P(G−)
=

(qi/q̃i)
d
(Xi,G

+)
EP

(q′i/q̃
′
i)
d
(Xi,G−)
EP

.

and can be written as

BDs(Xi,ΠXi ∪Xj ;α)

BDs(Xi,ΠXi ;α)
=

(qi/q̃i)
d
(Xi,G

+)
EP αd

(G+)
EP

(q′i/q̃
′
i)
d
(Xi,G−)
EP αd

(G−)
EP

→

{
0 if dEDF > − logα(P(G+)/P(G−))

+∞ if dEDF < − logα(P(G+)/P(G−))
.
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The Uniform (U) Graph Prior

The most common choice for P(G) is the uniform (U) distribution because it is
extremely difficult to specify informative priors [1, 3]. Assuming a uniform prior
is problematic because:

� Score-based structure learning algorithms typically generate new
candidate DAGs by a single arc addition, deletion or reversal, e.g.

P(G ∪ {Xj → Xi} | D)

P(G | D)
=
���������P(G ∪ {Xj → Xi})

P(G)

P(D | G ∪ {Xj → Xi})
P(D | G)

.

U always simplifies, and that implies −→pij =←−pij = p̊ij = 1/3 favouring the
inclusion of new arcs as −→pij +←−pij = 2/3 for each possible arc aij .

� Two arcs are correlated if they are incident on a common node [7], so
false positives and false negatives can potentially propagate through P(G)
and lead to further errors in learning G.

� DAGs that are completely unsupported by the data have most of the
probability mass for large enough N .
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Better Than U: the Marginal Uniform (MU) Graph Prior

In our previous work [7], we showed that

−→pij =←−pij ≈
1

4
+

1

4(N − 1)
→ 1

4
and p̊ij ≈

1

2
− 1

2(N − 1)
→ 1

2
,

so each possible arc is present in G with marginal probability ≈ 1/2 and, when
present, it appears in each direction with probability 1/2. We can use that as a
starting point, and assume an independent prior for each arc with the same
marginal probabilities as U (hence the name MU).

� MU does not favour arc inclusion as −→pij +←−pij = 1/2.

� MU does not favour the propagation of errors in structure learning
because arcs are independent from each other.

� MU computationally trivial to use: the ratio of the prior probabilities is
1/2 for arc addition, 2 for arc deletion and 1 for arc reversal, for all arcs.

We can also assume −→pij +←−pij = β with β = 2
N−1 to have O(N) expected arcs

in the prior, which often works even better.
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Design of the Simulation Study

We evaluated BIC and U+BDeu, U+BDs, MU+BDeu, MU+BDs with
α = 1, 5, 10 on:

� 10 reference BNs covering a wide range of N (8 to 442), p = |Θ| (18 to
77K) and number of arcs |A| (8 to 602).

� 20 samples of size n/p = 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 (to allow for
meaningful comparisons between BNs with such different N and p) for
each BN and n/p.

with performance measures for:

� the quality of the learned DAG using the SHD distance [11] from the
reference BN;

� the number of arcs compared to the reference BN;

� the log-likelihood on a separate test set of size 10K, as an approximation
of Kullback-Leibler distance.

using hill-climbing and the bnlearn R package [6].
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Results: ALARM, SHD
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Results: ALARM, Number of Arcs
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Results: ALARM, Log-likelihood on the Test Set
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Conclusions

� We propose a new default posterior score for discrete BN structure
learning, defined it as the combination of a new prior over the space of
DAGs, the marginal uniform (MU) prior, and of a new empirical Bayes
marginal likelihood, which we call Bayesian Dirichlet sparse (BDs).

� In an extensive simulation study using 10 reference BNs we find that
MU+BDs outperforms U+BDeu for all combinations of BN and
sample sizes, both in the quality of the learned DAGs and in predictive
accuracy. Other proposals in the literature improve one at the
expense of the other [4, 9, 13, 14].

� This is achieved without increasing the computational complexity of
the posterior score, since MU+BDs can be computed in the same
time as U+BDeu.
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Thanks!
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