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Graphical Models

Graphical Models

Graphical models are defined by:

• a network structure, G = (V, E), either an undirected graph
(Markov networks, gene association networks, correlation
networks, etc.) or a directed graph (Bayesian networks). Each
node vi ∈ V corresponds to a random variable Xi;

• a global probability distribution, X, which can be factorised
into a set of small local probability distributions according to
the edges eij ∈ E present in the graph.

This combination allows a compact representation of the joint
distribution of large numbers of random variables and simplifies
inference on the resulting parameter space.
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Graphical Models

A Gaussian Markov Network (MARKS)
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Graphical Models

A Discrete Bayesian Network (ASIA)

visit to Asia? smoking?

tuberculosis? lung cancer? bronchitis?

either tuberculosis
or lung cancer?

positive X-ray?
dyspnoea?
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Graphical Models

A Discrete Bayesian Network (ASIA)
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Causal Protein Signalling

Networks
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Causal Protein Signalling Networks

Source

In the following, we try to reproduce (to the best of my ability, and
Karen Sachs’ recollections about the implementation details that
did not end up in the Methods section) the statistical analysis in
the following paper:

DOI: 10.1126/science.1105809
, 523 (2005);308Science
, et al.Karen Sachs

Causal Protein-Signaling Networks Derived from
Multiparameter Single-Cell Data

That’s a landmark paper in applying Bayesian Networks because:

• it successfully establishes causality claims;

• it highlights the use of observational vs interventional data;

• results are validated using existing literature.
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Causal Protein Signalling Networks

An Overview of the Data

The data consist in the simultaneous measurements of 11
phosphorylated proteins and phospholypids derived from thousands
of individual primary immune system cells:

• 1800 (observational) data subject only to general stimulatory
cues, so that the protein signalling paths are active;

• 600 (interventional) data with with specific stimulatory &
inhibitory cues for each of the following 4 proteins: pmek,
PIP2, pakts473, PKA;

• 1200 (interventional) data with specific cues for PKA.

Overall, the data set contains 5400 observations with no missing
value. Not all the proteins involved in the modelling pathways are
observed.
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Causal Protein Signalling Networks

Network Reconstructed from Literature
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Causal Protein Signalling Networks

Using Only Observational Data

As a first, exploratory analysis, we can try to learn a network from
the data that were subject only to general stimulatory cues. Since
these cues only ensure the pathways are active, but do not tamper
with them in any way, such data are observational (as opposed to
interventional).

> library(bnlearn)

> hc(sachs, score = "bge", iss = 5)

Here we try to learn the network that maximises posterior
probability (the "bge" score, when you assume normality) giving
very little weight to the uninformative prior (iss = 5) compared
to the sample.
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Causal Protein Signalling Networks

Network Reconstructed from the Observational Data
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Arcs highlighted in red are also present in the network reconstructed from literature.
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Causal Protein Signalling Networks

Expression Data are not Symmetric

expression levels

de
ns

ity
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Therefore, assuming a Gaussian distribution is problematic.
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Causal Protein Signalling Networks

Expression Data are not Linked by Linear Relationships
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Therefore, tests for correlation are biased and have extremely low power.
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Causal Protein Signalling Networks

Discretise!

Since we cannot use Gaussian Bayesian networks, we can discretise
the data instead. Hartemink’s method is designed to preserve
pairwise dependencies as much as possible, unlike marginal
discretisation methods.

> dsachs = discretize(sachs, method = "hartemink",

+ breaks = 3, ibreaks = 60,

+ idisc = "quantile")

Variables are first marginally discretised in 60 intervals, which are
subsequently collapsed while reducing the mutual information
between the variables as little as possible. The process stops when
each variable has 3 levels (i.e. low, average and high expression).
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Causal Protein Signalling Networks

Network Reconstructed from the Discretised Data
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Two more arcs are correctly identified, but most are still missing.
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Causal Protein Signalling Networks

Considering Interventional Data

It is apparent from the previous networks that most signalling
paths are not statistically identifiable unless we inhibit or stimulate
the expression of at least some of the proteins in the network.
Therefore, we include the interventional data in the analysis.

> INT = sapply(1:11, function(x)

+ { which(isachs$INT == x) })

> names(INT) = names(isachs)[1:11]

> hc(isachs[, 1:11], score = "mbde",

+ exp = INT, iss = 5)

Since the standard posterior probability ("bde") does not take
interventions into account, we use a modified BDe score ("mbde")
that disregards any causal influence for the proteins that have been
inhibited or stimulated.
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Causal Protein Signalling Networks

Network Reconstructed from the Interventional Data
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More arcs are included, but there are many false positives.
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Causal Protein Signalling Networks

Removing Noisy Arcs with Model Averaging

Two simple steps can be taken to remove noisy arcs:

• average multiple networks obtained using different starting
points when learning the structure of the graph;

• use TABU search (tabu) instead of Hill-Climbing (hc).

> start = random.graph(nodes = nodes,

+ method = "melancon", num = 500, burn.in = 10^5,

+ every = 100)

> netlist = lapply(start, function(net) {

+ tabu(isachs[, 1:11], score = "mbde", exp = INT,

+ iss = 10, start = net, tabu = 50) })

> arcs = custom.strength(netlist, nodes = nodes)

A similar approach was chosen as the best performing in Sachs et
al. [5], with minor differences in results.
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Causal Protein Signalling Networks

Interventional Data with Model Averaging
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All the arcs supported by literature are present in the network.
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