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Current Practices in Bayesian Networks Modelling

Bayesian Networks Modelling Framework

Bayesian network modelling has focused on two sets of parametric
assumptions, because of the availability of closed form results and
computational tractability:

• discrete Bayesian networks, which assume that both the global
and the local distributions are multinomial. Common associa-
tion measures are mutual information (log-likelihood ratio) and
Pearson’s X2;

• Gaussian Bayesian networks, which assume that the global dis-
tribution is multivariate normal and the local distributions are
univariate normals linked by linear dependence relationships.
Association is measured by various estimators of Pearson’s cor-
relation.
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Open Problems

In applications to data in genetics and systems biology, these two
sets of assumptions (and Bayesian networks in general) present some
important limitations.

• Given the small sizes of available data sets (n� p), how effec-
tive is the classic Bayesian take on learning and inference?

• Are the discrete and Gaussian assumptions really sensible for
these kinds of data?

• Can Bayesian networks be used to perform an effective feature
selection?
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Data in Genetics and Systems Biology

Overview

In genetics and systems biology, graphical models are employed to describe
and identify interdependencies among genes and gene products, with the
eventual aim to better understand the molecular mechanisms that link
them. Data commonly made available for this task by current technologies
fall into three groups:

• gene expression data [6, 19], which measure the intensity of the ac-
tivity of a particular gene through the presence of messenger RNA or
other kinds of non-coding RNA;

• protein signalling data [17], which measure the proteins produced as
a result of each gene’s activity;

• sequence data [11], which provide the nucleotide sequence of each
gene. For both biological and computational reasons, such data con-
tain mostly biallelic single-nucleotide polymorphisms (SNPs).
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Gene Expression Data

Gene expression data are composed of a set of intensities from a
microarray measuring the abundance of several RNA patterns, each
meant to probe a particular gene.

• Microarrays measure abundances only in terms of relative probe
intensities, so comparing different studies or including them in
a meta-analysis is difficult in practice.

• Furthermore, even within a single study abundance measure-
ments are systematically biased by batch effects introduced by
the instruments and the chemical reactions used in collecting
the data.

• Gene expression data are modelled as continuous random vari-
ables either assuming a Gaussian distribution or applying results
from robust statistics.
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Gene Expression Data
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Network with regulator (grey) and target (white) genes from Friedman et al. [6].
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Models for Gene Expression Data

Two classes of undirected graphical models are in common use:

• relevance networks [2], also known in statistics as correlation
graphs, which are constructed using marginal dependencies.

• gene association networks, also known as concentration graphs
or graphical Gaussian models [24], which consider conditional
rather than marginal dependencies.

Bayesian network use by Friedman et al. [7], and has also been
reviewed more recently in Friedman [4]. Inference procedures are
usually unable to identify a single best BN, settling instead on a set
of equally well behaved models. For this reason, it is important to
incorporate prior biological knowledge into the network through the
use of informative priors [12].
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Protein Signalling Data

Protein signalling data are similar to gene expression data in many
respects.

• In fact, they are often used to investigate indirectly the expres-
sion of a set of genes.

• The relationships between proteins are indicative of their phys-
ical location within the cell and of the development over time
of the molecular processes (pathways) they are involved in.

• Protein signalling data sometimes have sample sizes that are
much larger than either gene expression or sequence data.
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Protein Signalling Data
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Network from the multi-parameter single-cell data from Sachs et al. [17].

Marco Scutari University College London



Data in Genetics and Systems Biology

Sequence Data

Sequence data analysis focuses on modelling the behaviour of one
or more phenotypic traits (e.g. the presence of a disease in humans,
yield in plants, milk production in cows) by capturing direct and
indirect causal genetic effects:

• the identification of the genes that are strongly associated with
a trait is called a genome-wide association study (GWAS);

• the prediction of a trait for the purpose of implementing a
selection program (i.e. to decide which plants or animals to
cross so that the offspring exhibit) is called genomic selection
(GS).
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Models for Sequence Data

From a graphical modelling perspective, modelling each SNP as a discrete
variable is the most convenient option; multinomial models have received
much more attention in literature than Gaussian or mixed ones. On the
other hand, the standard approach in genetics is to recode the alleles as
numeric variables,

Xi =


1 if the SNP is “AA”

0 if the SNP is “Aa”

−1 if the SNP is “aa”

or Xi =


2 if the SNP is “AA”

1 if the SNP is “Aa”

0 if the SNP is “aa”

,

and use additive Bayesian linear regression models [3, 10, 14] of the form

y = µ+

n∑
i=1

Xigi + ε, gi ∼ πgi , ε ∼ N(0,Σ).
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Bayesian Basics: Priors and Posteriors

Following Bayes’ theorem, the posterior distribution of the parame-
ters in the model (say θ) given the data is

p(θ | X) ∝ p(X | θ) · p(θ) = L(θ;X) · p(θ)

or, equivalently,

log p(θ | X) = c+ logL(θ;X) + log p(θ).

It is important to note two fundamental properties:

• logL(θ;X) is a function of the data and scales with the sample
size, as n→∞;

• log p(θ) does not scale as n→∞.
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Posteriors in “Small n, Large p” Settings

Therefore, as the sample size increases, the information present in
the data dominates the information provided in the prior and deter-
mines the overall behaviour of the model. For small sample sizes:

• the prior distribution plays a much larger role because there is
not enough data available to disprove the assumptions the prior
encodes;

• information is introduced by prior is defined not only through
is hyperparameters, but from the probabilistic structure of the
prior itself;

• even non-informative priors are never completely non-informative,
only “least informative” [20, 21].
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GWAS/GS Models vs Bayesian Networks

GWAS/GS Model
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Limits of Bayesian Networks’ Parametric Assumptions

Distributional assumptions underlying BNs present important limi-
tations:

• Gaussian BNs assume that the global distribution is multi-
variate normal, which is unreasonable for sequence data (dis-
crete), gene expression and protein signalling data (significantly
skewed);

• Gaussian BNs are only able to capture linear dependencies;

• discrete BNs assume a multinomial distribution and disregard
the ordering of the intervals (for discretised data) or of the
alleles (in sequence data) is ignored.
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Limits of Bayesian Networks’ Parametric Assumptions

However, most biological phenomena are not linear nor unordered:
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and both learning and subsequent inference are not aware that de-
pendencies are likely to take the form of (non-linear) stochastic
trends, especially in the case of sequence data.

Marco Scutari University College London



Parametric Assumptions

A Test for Trend

An constraint-based approach that has the potential to outperform
both discrete and Gaussian BNs has been recently proposed by
Musella [13] using the Jonckheere-Terpstra test for trend among
ordered alternatives [8, 22].
The null hypothesis is that of homogeneity; if we denote with Fi,k(x3)
the distribution function of X3 | X1 = i,X2 = k,

H0 : F1,k(x3) = F2,k(x3) = . . . = FT,k(x3) for ∀x3 and ∀k.

The alternative hypothesis H1 = H1,1 ∪ H1,2 is that of stochastic
ordering, either increasing

H1,1 : Fi,k(x3) > Fj,k(x3) with i < j for ∀x3 and ∀k

or decreasing

H1,2 : Fi,k(x3) 6 Fj,k(x3) with i < j for ∀x3 and ∀k.
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The Jonckheere-Terpstra Test Statistic

Consider a conditional independence test for X1 ⊥⊥ X3 | X2, where
X1, X2 and X3 have T , L and C levels respectively. The test
statistic is defined as

JT =

L∑
k=1

T∑
i=2

i−1∑
j=1

[
C∑

s=1

wijsknisk −
ni+k(ni+k + 1)

2

]

where the wijsk are Wilcoxon scores, defined as

wijsk =

s−1∑
t=1

[
nitk + njtk +

nisk + njsk + 1

2

]
,

and has an asymptotic normal distribution with mean and variance
defined in Lehmann [9] and Pirie [16].
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Feature Selection in Genetics and Systems Biology

It is not possible, nor expected, for all genes in modern, genome-
wide data sets to be relevant for the trait or the molecular process
under study:

• for sequence data, we aim to find the subset of genes S ⊂ X
for a trait y such that

P(y | X) = P(y | S,X \ S) ≈ P(y | S),

which is none other than the Markov blanket of the trait.

• for gene expression and protein signalling data, we need to
know at least part of the pathways under investigation to
initialise the feature selection. Otherwise, we can only enforce
sparsity using shrinkage tests [18] or non-uniform structural
priors [5].
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Markov Blankets for GWAS/GS Models

After using a (reasonably fast) Markov blanket learning algorithm
identify such a subset S, we can either fit one of the Bayesian linear
regression models in common use or learn a BN from y and S.

PROS: in both cases, the smaller number of variables makes models
more regular.

CONS: the conditional independence tests used by Markov blanket
learning algorithms assume that observations are independent. Such
an assumption is likely to be violated in animal and plant genetics,
which make heavy use of inbred populations.
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Markov Blankets for Gene Expression Data

CONS:

• we must learn the Markov blanket of each gene, which is an embar-
rassingly parallel task but a computationally intensive one;

• if we use backtracking and other optimisations to share information
between different runs, significant speed-ups are possible at the cost
of an increased error rate;

• in both cases, merging the Markov blankets requires the use of sym-
metry corrections [1, 23] that violate the proofs of correctness of the
learning algorithms.

A better approach is the feature selection algorithm by Peña et al. [15].
PROS:

• it identifies in a single run all the nodes required to compute the
conditional probability distribution for a given set of variables;

• it uses only pairwise measures of dependence, so it is computationally
and sample efficient.
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Tre”, 2011.

T. Park and G. Casella.
The Bayesian Lasso.
Journal of the American Statistical Association, 103(482), 2008.

Marco Scutari University College London



References

References IV

J. Peña, R. Nilsson, J. Björkegren, and J. Tegnér.
Identifying the Relevant Nodes Without Learning the Model.
In Proceedings of the 22nd Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-06), pages 367–374, 2006.

W. Pirie.
Jonckheere Tests for Ordered Alternatives.
In Encyclopaedia of Statistical Sciences, pages 315–318. Wiley, 1983.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan.
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell
Data.
Science, 308(5721):523–529, 2005.

M. Scutari and A. Brogini.
Bayesian Network Structure Learning with Permutation Tests.
Communications in Statistics – Theory and Methods, 41(16–17):3233–3243,
2012.

P. Spirtes, C. Glymour, and R. Scheines.
Causation, Prediction, and Search.
MIT Press, 2000.

Marco Scutari University College London



References

References V

H. Steck.
Learning the Bayesian Network Structure: Dirichlet Prior versus Data.
In Proceedings of the 24th Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-08), pages 511–518, 2008.

H. Steck and T. Jaakkola.
On the Dirichlet Prior and Bayesian Regularization.
In Advances in Neural Information Processing Systems (NIPS), pages 697–704,
2002.

T. J. Terpstra.
The Asymptotic Normality and Consistency of Kendall’s Test Against Trend
When the Ties Are Present in One Ranking.
Indagationes Mathematicae, 14:327–333, 1952.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis.
The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm.
Machine Learning, 65(1):31–78, 2006.

J. Whittaker.
Graphical Models in Applied Multivariate Statistics.
Wiley, 1990.

Marco Scutari University College London


	Current Practices in Bayesian Networks Modelling
	Data in Genetics and Systems Biology
	Bayesian Statistics
	Parametric Assumptions
	Feature Selection
	Thanks!
	References

