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Efficient Use of Marker Data

The ever-increasing amount of genetic information available in plant and
animal genetics requires sophisticated computational approaches to perform
GS and GWAS efficiently. In this talk we will try to address two broad
issues.

1. The number of genotyped markers has been increasing for many years.
Do we really need such dense, genome-wide profiles, or is focusing
on a smaller set of suitably chosen markers just as effective? In
other words, is it possible to perform feature selection without losing
relevant information?

2. Many GS models explicitly use of a kinship matrix in the estimation of
genetic effects, e.g. GBLUP, RR-BLUP. Which marker-based approach
to compute such a matrix makes the best use of the profiles?
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Feature Selection

It is not possible for all markers in a profile to be relevant for a
trait (and we don’t expect them to), both because they usually
outnumber the varieties under study (n � p) and because some
markers provide essentially the same information due to LD.

Therefore, both GS and GWAS can be cast as a feature selection
problems. We aim to find the subset of markers S ⊂ X such that

P(y |X) = P(y |S,X \ S) ≈ P(y |S),

that is, the subset of markers (S) that makes all other markers
(X \ S) redundant as far as the trait y we are studying is concerned.
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Markov Blankets

There are several ways to identify S;
some models above do that implicitly
(e.g. LASSO). A probabilistic approach
that does that explicitly is Markov
blanket learning [9, 13], which originates
in graphical modelling (Bayesian and
Markov networks). A Markov blanket
(MB) is a minimal set B(y) that satisfies

y ⊥⊥ X \ B(y) | B(y)

and is unique under very mild conditions. It can be learned from the
data with one of several algorithms (e.g. Incremental Association
Markov Blanket, IAMB) in polynomial time using a sequence of
conditional independence tests involving small subsets of markers.
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Kinship Estimation

Three kinship matrix estimators have been considered:

• Habier et al. [5]

K =
(X−P)(X−P)T

2
∑

i pi(1− pi)

where P = [2p1 · · · 2pm] and pi is the allele frequency of the
ith marker;

• Astle & Balding [1],

K = XX
T

where X is the standardised X.

• Speed et al. [12] LD-adjusted kinship matrix, which adjusts
for over-estimation of causal variants in high-LD regions and
under-estimation in low-LD regions.
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Data Sets

Data sets used as benchmarks are:

• the barley marker profiles from the AGOUEB project [2, 15]
(227 profiles with 810 SNPs), with yield as the trait;

• the WTCCC [11, 14] mice heterogeneous population (2K
profiles with 12K SNPs) with growth rate as the trait;

• the Oryza sativa rice [17] (414 profiles with 74K SNPs), with
the number of seeds per panicle as the trait.

All the data sets were pre-processed by removing highly-correlated
markers (r > 90%), those with > 20% missing values and those
with MAF < 0.01.
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GS Models & Software

We considered 4 GS models which do not account explicitly for kinship:

• Partial Least Squares (R package pls);

• Ridge Regression (R packages penalized and glmnet);

• LASSO (R packages penalized and glmnet);

• Elastic Net (R packages penalized and glmnet);

and 2 models which do:

• GBLUP (R package synbreed);

• RR-BLUP (R package synbreed).

The kinship matrices from Habier et al. [5] and Astle & Balding [1] have
been estimated with the synbreed R package, and the one from Speed et
al. has been estimated with ldak (http://www.ldak.org/).

Markov blanket feature selection was performed with the IAMB algorithm
as implemented in the bnlearn R package.
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Predictive Power: Markov Blankets

Model COR CORMB ∆ CV CVMB ∆

AGOUEB, YIELD (184.9 SNPs out of 810, 22.82%)

PLS 0.812 0.805 −0.007 0.495 0.495 +0.000
Ridge 0.817 0.765 −0.051 0.501 0.489 −0.012
LASSO 0.829 0.811 −0.018 0.400 0.399 −0.001
Elastic Net 0.806 0.752 −0.054 0.500 0.489 −0.011

MICE, GROWTH RATE (543.1 SNPs out of 12K, 4.32%)

PLS 0.716 0.882 +0.166 0.344 0.388 +0.044
Ridge 0.841 0.889 +0.047 0.366 0.394 +0.028
LASSO 0.717 0.881 +0.164 0.390 0.394 +0.004
Elastic Net 0.751 0.893 +0.142 0.403 0.401 −0.001

RICE, SEEDS PER PANICLE (293 SNPs out of 74K, 0.39%)

PLS 0.853 0.923 +0.070 0.583 0.601 +0.018
Ridge 0.950 0.921 −0.029 0.601 0.612 +0.011
LASSO 0.885 0.939 +0.054 0.516 0.580 +0.064
Elastic Net 0.958 0.917 +0.040 0.602 0.612 +0.010
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Predictive Power: Kinship

GBLUP RR-BLUP
Model COR CV COR CV

AGOUEB, YIELD (810 SNPs)

Habier et al. 0.847 0.512 0.846 0.459
Astle & Balding 0.848 0.513 0.845 0.460
Speed et al. 0.832 0.521 0.847 0.460

MICE, GROWTH RATE (12K SNPs)

Habier et al. 0.656 0.366 0.654 0.306
Astle & Balding 0.688 0.388 0.656 0.308
Speed et al. 0.695 0.400 0.666 0.310

RICE, SEEDS PER PANICLE (74K SNPs)

Habier et al. 0.933 0.590 0.932 0.595
Astle & Balding 0.933 0.598 0.933 0.596
Speed et al. 0.918 0.594 0.935 0.595
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Markov Blankets and Kinship Estimation (GBLUP)

GBLUP

Model CORMB ∆ CVMB ∆ CVKIN
MB ∆

AGOUEB, YIELD (810 SNPs)

Habier et al. 0.881 +0.033 0.412 −0.100 0.482 −0.030
Astle & Balding 0.881 +0.033 0.414 −0.099 0.491 −0.022
Speed et al. 0.882 +0.049 0.415 −0.105 0.475 −0.045

MICE, GROWTH RATE (12K SNPs)

Habier et al. 0.858 +0.201 0.118 −0.248 0.357 −0.008
Astle & Balding 0.870 +0.182 0.176 −0.211 0.363 −0.025
Speed et al. 0.876 +0.181 0.195 −0.204 0.379 −0.021

RICE, SEEDS PER PANICLE (74K SNPs)

Habier et al. 0.950 +0.017 0.428 −0.161 0.592 +0.002
Astle & Balding 0.941 +0.008 0.429 −0.168 0.589 −0.008
Speed et al. 0.949 +0.031 0.425 −0.169 0.591 −0.003

Marco Scutari, Ian Mackay and David Balding University College London



Conclusions

• Among the models considered, the Elastic Net and GBLUP consistently
outperformed the other models in terms of predictive ability.

• Speed et al. LD-adjusted kinship matrix usually provides better
predictive power than other kinship estimators, often outperforming
them for GBLUP.

• Performing feature selection by learning the Markov blanket of a trait
can reduce the size of the marker profile severalfold with no significant
loss (or with a small increase) in predictive power.

• Computing kinship after feature selection results in a substantial
loss of predictive power for GBLUP; fitting the models after feature
selection but with the kinship matrix computed from the full marker
profiles works fine.
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