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Graphical Models

Graphical Models

Graphical models are defined by:

• a network structure, G = (V, E), either an undirected graph
(Markov networks, gene association networks, correlation
networks, etc.) or a directed graph (Bayesian networks). Each
node vi ∈ V corresponds to a random variable Xi;

• a global probability distribution, X, which can be factorised
into a small set of local probability distributions according to
the edges eij ∈ E present in the graph.

This combination allows a compact representation of the joint
distribution of large numbers of random variables and simplifies
inference on the resulting parameter space.
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Graphical Models

A Simple Bayesian Network: Watson’s Lawn
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Graphical Models

Graphical Separation and Independence

The main role of the graph structure is to express the conditional
independence relationships among the variables in the model, thus
specifying the factorisation of the global distribution. Different
classes of graphs express these relationships with different
semantics, which have in common the principle that graphical
separation of two (sets of) nodes implies the conditional
independence of the corresponding (sets of) random variables.

For networks considered here, separation is defined as:

• (u-)separation in Markov networks;

• d-separation in Bayesian networks.
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Graphical Models

Graphical Separation
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Graphical Models

Maps and Independence

A graph G is a dependency map (or D-map) of the probabilistic
dependence structure P of X if there is a one-to-one correspondence
between the random variables in X and the nodes V of G, such that for
all disjoint subsets A, B, C of X we have

A ⊥⊥P B |C =⇒ A ⊥⊥G B |C.

Similarly, G is an independency map (or I-map) of P if

A ⊥⊥P B |C⇐= A ⊥⊥G B |C.

G is said to be a perfect map of P if it is both a D-map and an I-map,
that is

A ⊥⊥P B |C⇐⇒ A ⊥⊥G B |C,

and in this case P is said to be isomorphic to G.

Graphical models are formally defined as I-maps under the respective
definitions of graphical separation.
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Graphical Models

Bayesian Networks, Equivalence Classes and Moral Graphs

Following the definitions given in the previous couple of slides, the graph
associated with a Bayesian network has three useful transforms:

• the skeleton: the undirected graph underlying a Bayesian network,
i.e. the graph we get if we disregard edges’ direction.

• the equivalence class: the graph in which only edges which are part
of a v-structure (i.e. A→ C ← B) and/or might result in one are
directed. All valid combinations of the other edges’ directions result
in networks representing the same dependence structure P .

• the moral graph: the graph obtained by disregarding edges’
direction and joining the two parents in each v-structure with an
edge. This is essentially a way to transform a Bayesian network into
a Markov network.
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Graphical Models

Equivalence Classes
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Graphical Models

Factorisation into Local Distributions

The most important consequence of defining graphical models as I-maps
is the factorisation of the global distribution into local distributions:

• in Markov networks, local distributions are associated with the
cliques Ci (maximal subsets of nodes in which each element is
adjacent to all the others) in the graph,

P(X) =

k∏
i=1

ψi(Ci),

and the ψk functions are called potentials.

• in Bayesian networks, each local distribution is associated with a
single node Xi and depends only on the joint distribution of its
parents ΠXi

:

P(X) =

p∏
i=1

P(Xi |ΠXi
)
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Graphical Models

A Note About Potentials

Potentials are non-negative functions representing the relative mass of
probability of each clique Ci. They are proper probability or density
functions only when the graph is decomposable or triangulated, that is
when it contains no induced cycles other than triangles. With any other
type of graph inference becomes very hard, if possible at all, because
ψ1, ψ2, . . . , ψk have no direct statistical interpretation.

In this case the global distribution factorises again according to the chain
rule and can be written as

P(X) =

∏k
i=1 P(Ci)∏k
i=1 P(Si)

(1)

where Si are the nodes of Ci which are also part of any other clique up
to Ci−1.
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Graphical Models

Neighbourhoods and Markov Blankets

Furthermore, for each node Xi two sets are defined:

• the neighbourhood, the set of nodes that are adjacent to Xi. These
nodes cannot be made independent from Xi.

• the Markov blanket, the set of nodes that completely separates Xi

from the rest of the graph. Generally speaking, it is the set of nodes
that includes all the knowledge needed to do inference on Xi, from
estimation to hypothesis testing to prediction, because all the other
nodes are conditionally independent from Xi given its Markov
blanket.

These sets are related in Markov and Bayesian networks; in particular,
Markov blankets can be shown to be the same using a moral graph.
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Graphical Models

Neighbourhoods and Markov Blankets

G

F

C

KB

A

H

E

D

L G

F

C

KB

A

H

E

D

L

Bayesian network Markov network

Markov blanket

Parents Children

Children's other
parents

Neighbours

Marco Scutari University College London



Graphical Models

Markov networks vs Bayesian networks

Markov networks and Bayesian networks do not appear to be
closely related, as they are so different in construction and
interpretation.

• There are indeed dependency models that have an undirected
perfect map but not a directed acyclic one, and vice versa.

• However, it can be shown that every dependency structure
that can be expressed by a decomposable graph can be
modelled both by a Markov network and a Bayesian network.

• It can also be shown that every dependency model expressible
by an undirected graph is also expressible by a directed acyclic
graph, with the addition of some auxiliary nodes.

These two results indicate that there is a significant overlap
between Markov and Bayesian networks, and that in many cases
both can be used to the same effect.
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Graphical Models

Probability Distributions: Discrete and Continuous

Data used in graphical modelling should respect the following
assumptions:

• if all the variables Xi are discrete, both the global and the
local distributions are assumed to be multinomial. Local
distributions are described using conditional probability tables;

• if all the variables Xi are continuous, the global distribution is
assumed to be a multivariate Gaussian distribution, and the
local distributions are univariate or multivariate Gaussian
distributions. Local distributions are described using partial
correlation coefficients;

• if both continuous and discrete variables are present, we can
assume a mixture or conditional Gaussian distribution,
discretise continuous attributes or use a nonparametric
approach.
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Graphical Models

Other Distributional Assumptions

Other fundamental distibutional assumptions are:

• observations must be independent. If some form of temporal
or spatial dependence is present, it must be specifically
accounted for in the definition of the network (as in dynamic
Bayesian networks);

• if the model will be used as a causal graphical model, that is,
to infer cause-effect relationship from experimental or (more
frequently) observational data, there must be no latent or
hidden variables that influence the dependence structure of
the model;

• all the relationships between the variables in the network must
be conditional independencies, because they are by definition
the only ones that can be expressed by graphical models.
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Graphical Models

A Gaussian Markov Network (MARKS)
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Graphical Models

A Discrete Bayesian Network (ASIA)
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Graphical Models

A Discrete Bayesian Network (ASIA)
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Graphical Models

Limitations of These Probability Distribution

• no real-world, multivariate data set follows a multivariate Gaussian
distribution; even if the marginal distributions are normal, not all
dependence relationships are linear.

• computing partial correlations is problematic in most large data sets
(and in a lot of small ones, too).

• parametric assumptions for mixed data have strong limitations, as
they impose constraints on which edges may be present in the graph
(e.g. a continuous node cannot be the parent of a discrete node).

• discretisation is a common solution to the above problems, but it
discards useful information and it is tricky to get right (i.e. choosing
a set of intervals such that the dependence relationships involving
the original variable are preserved).

• ordered categorical variables are treated as unordered, again losing
information.
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Graphical Model Learning

Learning a Graphical Model

Model selection and estimation are collectively known as learning, and
are usually performed as a two-step process:

1. structure learning, learning the graph structure from the data.

2. parameter learning, learning the local distributions implied by the
graph structure learned in the previous step.

This work-flow is implicitly Bayesian; given a data set D and if we denote
the parameters of the global distribution as X with Θ, we have

P(M|D)︸ ︷︷ ︸
learning

= P(G |D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

and structure learning is done in practise as

P(G |D) ∝ P(G) P(D |G) = P(G)

∫
P(D |G,Θ) P(Θ | G)dΘ.
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Graphical Model Learning

Local Distributions: Divide and Conquer

Most tasks related to both learning and inference are NP-hard (they
cannot be solved in polynomial time in the number of variables). They
are still feasible thanks to the decomposition of X into the local
distributions; under some assumptions (parameter independence) there is
never the need to manipulate more than one of them at a time.

In Bayesian networks, for example, structure learning boils down to

P(D |G) =

∫ ∏
[P(Xi |ΠXi

,ΘXi
) P(ΘXi

|ΠXi
)] dΘ

=
∏[∫

P(Xi |ΠXi
,ΘXi

) P(ΘXi
|ΠXi

)dΘXi

]
and parameter learning boils down to

P(Θ | G,D) =
∏

P(ΘXi
|ΠXi

,D).
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Structure Learning

The Big Three: Constraint-based, Score-based and Hybrid

Despite the (sometimes confusing) variety of theoretical backgrounds and
terminology they can all be traced to only three approaches:

• constraint-based algorithms: they use statistical tests to learn
conditional independence relationships (called constraints in this
setting) from the data and assume that the graph underlying the
probability distribution is a perfect map to determine the correct
network structure.

• score-based algorithms: each candidate network is assigned a score
reflecting its goodness of fit, which is then taken as an objective
function to maximise.

• hybrid algorithms: conditional independence tests are used to learn
at least part of the conditional independence relationships from the
data, thus restricting the search space for a subsequent score-based
search. The latter determines which edges are actually present in
the graph and, in the case of Bayesian networks, their direction.

Marco Scutari University College London



Structure Learning

Constraint-based Structure Learning Algorithms

The mapping between edges and conditional independence relationships
lies at the core of graphical modelling; therefore, one way to learn the
structure of a graphical model is to check which ones of such
relationships hold according to a suitable conditional independence test.

Such an approach results in a set of conditional independence constraints
that identify a single graph (for a Markov network) or a single equivalence
class (for a Bayesian network). In the latter case, the relevant edge
directions are determined using more conditional independence tests to
identify which v-structures are present in the graph.
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Structure Learning

The Inductive Causation Algorithm

The Inductive Causation Algorithm

1. For each pair of variables A and B in X search for set SAB ⊂ X
such that A and B are independent given SAB and A,B /∈ SAB . If
there is no such a set, place an undirected arc between A and B.

2. For each pair of non-adjacent variables A and B with a common
neighbour C, check whether C ∈ SAB . If this is not true, set the
direction of the arcs A− C and C −B to A→ C and C ← B.

3. Set the direction of arcs which are still undirected by applying
recursively the following two rules:

3.1 if A is adjacent to B and there is a strictly directed path from
A to B then set the direction of A−B to A→ B;

3.2 if A and B are not adjacent but A→ C and C −B, then
change the latter to C → B.

4. Return the resulting (partially) directed acyclic graph.
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Structure Learning

Conditional Independence Tests

Classic tests are used because they are fast but are not particularly good.

• asymptotic discrete tests: mutual information/log-likelihood ratio
and Pearson’s X2 with a χ2 distribution.

• asymptotic continuous tests: Fisher’s Z, with a N(0, 1) distribution,
and mutual information/log-likelihood ratio, with a χ2 distribution.

• exact continuous tests: t test with a Student’s t distribution.

Better alternatives are:

• permutation tests: all of the above, evaluated using the
permutation distribution as the null distribution. The resulting
structure is better for goodness-of-fit and prediction.

• shrinkage tests: log-likelihood ratio tests can be reworked as
shrinkage tests whose behaviour is determined by a regularisation
parameter λ. The resulting structure is closer to the “real” one and
is therefore better for causal reasoning.
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Structure Learning

Other Constraint-based algorithms

• Peter & Clark (PC): a true-to-form implementation of the Inductive
Causation algorithm, specifying only the order of the conditional
independence tests. Starts from a saturated network and performs
tests gradually increasing the number of conditioning nodes.

• Grow-Shrink (GS) and Incremental Association (IAMB) variants:
these algorithms learn the Markov blanket of each node to reduce
the number of tests required by the Inductive Causation algorithm.
Markov blankets are learned using different forward and step-wise
approaches; the initial network is assumed to be empty (i.e. not to
have any edge).

• Max-Min Parents & Children (MMPC): uses a minimax approach to
avoid conditional independence tests known a priori to accept the
null hypothesis of independence.
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Structure Learning

Pros & Cons of Constraint-based Algorithms

• They depend heavily on the quality of the conditional
independence tests they use; all proofs of correctness assume
tests are always right. That’s why asymptotic tests are bad,
and non-regularised parametric tests are not ideal.

• They are consistent, but converge is slower than score-based
and hybrid algorithms.

• At any single time they evaluate a small subset of variables,
which makes them very memory efficient.

• They do not require multiple testing adjustment in most cases.

• They are embarrassingly parallel, so they scale extremely well.
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Structure Learning

Score-based Structure Learning Algorithms

The dimensionality of the space of graph structures makes an exhaustive
search unfeasible in practice, regardless of the goodness-of-fit measure
(called network score) used in the process. However, heuristics can still
be used in conjunction with decomposable scores, i.e.

Score(G) =
∑

Score(Xi |ΠXi)

such as

BIC(G) =
∑

log P(Xi |ΠXi
)− |ΘXi |

2
log n

BDe(G),BGe(G) =
∑

log

[∫
P(Xi |ΠXi

,ΘXi
) P(ΘXi

|ΠXi
)dΘXi

]

if each comparison involves structures differing in only one local
distribution at a time.
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Structure Learning

The Hill-Climbing Algorithm

The Hill-Climbing Algorithm

1. Choose an initial network structure G, usually (but not necessarily)
empty.

2. Compute the score of G, denoted as ScoreG = Score(G).

3. Set maxscore = ScoreG .

4. Repeat the following steps as long as maxscore increases:

4.1 for every possible arc addition, deletion or reversal not
resulting in a cyclic network:

4.1.1 compute the score of the modified network G∗,
ScoreG∗ = Score(G∗):

4.1.2 if ScoreG∗ > ScoreG , set G = G∗ and ScoreG = ScoreG∗ .

4.2 update maxscore with the new value of ScoreG.

5. Return the directed acyclic graph G.
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Structure Learning

The Hill-Climbing Algorithm
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Structure Learning

Other Score-based Algorithms

• Hill-Climbing + Random Restart: performs several hill-climbing
runs, perturbing the result of each one as the initial network for the
next. It does get stuck in local maxima as often as plain
hill-climbing.

• Greedy Equivalent Search: hill-climbing over equivalence classes
rather than graph structures; the search space is much smaller.

• Tabu Search: a modified hill-climbing that keeps a list of the last k
structures visited, and returns only if they are all worse than the
current one.

• Genetic Algorithms: they perturb (mutation) and combine crossover
features through several generations of structures, and keep the
ones leading to better scores. Inspired by Darwinian evolution.

• Simulated Annealing: again similar to hill-climbing, but not looking
at the maximum score improvement at each step. Very difficult to
use in practice because of its tuning parameters.
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Structure Learning

Pros & Cons of Score-based Algorithms

• Convergence to the global maximum (i.e. the best structure)
is not guaranteed for finite samples, the search may get stuck
in a local maximum.

• They are consistent, and they converge faster than
constraint-based algorithms, but this is more due to the
properties of the BDe and BGe scores than the algorithms
themselves.

• They require a definition of both the global and the local
densities, and a matching decomposable, network score.

• Most scores have tuning parameters, whereas conditional
independence tests do not.

Marco Scutari University College London



Structure Learning

Hybrid Structure Learning Algorithms

Hybrid algorithms combine constraint-based and score-based algorithms
to complement the respective strengths and weaknesses; they are
considered the state of the art in current literature.

They work by alternating the following two steps:

• learn some conditional independence constraints to restrict the
number of candidate networks;

• find the best network that satisfies those constraints and define a
new set of constraints to improve on.

These steps can be repeated several times (until convergence), but one or
two times is usually enough.
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Structure Learning

The Sparse Candidate Algorithm

The Sparse Candidate Algorithm

1. Choose a network structure G, usually (but not necessarily) empty.

2. Repeat the following steps until convergence:

2.1 restrict: select a set Ci of candidate parents for each node
Xi ∈ X, which must include the parents of Xi in G;

2.2 maximise: find the network structure G∗ that maximises
Score(G∗) among the networks in which the parents of each
node Xi are included in the corresponding set Ci;

2.3 set G = G∗.

3. Return the directed acyclic graph G.
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Structure Learning

Pros & Cons of Structure Learning Algorithms

• Since only the general framework is defined, it is easy to
modify them to use newer constraint-based and score-based
algorithms.

• You can pick and match conditional independence tests and
network scores to create a learning algorithm ranging from
frequentist to Bayesian to information-theoretic and anything
in between (within reason).

• They are usually faster than the alternatives, and more stable.

• Tuning parameters can be difficult to tune for some
configurations of algorithms, tests and scores.
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Parameter Learning

The Big Three: Likelihood, Bayesian and Shrinkage

Once the structure of the model is known, the problem of estimating the
parameters of the global distribution can be solved by estimating the
parameters of the local distributions, one at a time.

Three common choices are:

• maximum likelihood estimators: just the usual empirical estimators.
Often described as either maximum entropy or minimum divergence
estimators in information-theoretic literature.

• Bayesian posterior estimators: posterior estimators, based on
conjugate priors to keep computations fast, simple and in closed
form.

• shrinkage estimators: regularised estimators based either on
James-Stein or Bayesian shrinkage results.
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Parameter Learning

Maximum Likelihood and Maximum Entropy Estimation

The classic estimators for (conditional) probabilities and (partial)
correlations are a bad choice for almost all real-world problems.
They are still around because:

• they are used in benchmark simulations;

• computer scientists do not care much about parameter estimation.

However:

• maximum likelihood estimates are unstable in most multivariate
problems, both discrete and continuous;

• for the multivariate Gaussian distribution, James & Stein proved in
the 1950s that the maximum likelihood estimator for the mean is
not admissible in 3+ dimensions;

• partial correlations are often ill-behaved because of that, even with
Moore-Penrose pseudo-inverses;

• maximum likelihood estimates are non-smooth and create problems
when using the graphical model for inference.
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Parameter Learning

Maximum a Posteriori Bayesian Estimation

Bayesian posterior estimates are the sensible choice for parameter
estimation according to Koller’s & Friedman’s tome on graphical models.
Choices for the priors are limited (for computational reasons) to
conjugate distributions, namely:

• the Dirichlet for discrete models, i.e.

Dir(αk |ΠXi
=π)

data−→ Dir(αk |ΠXi
=π + nk |ΠXi

=π)

meaning that p̂k |ΠXi
=π = αk |ΠXi

=π/
∑
π αk |ΠXi

=π.

• the Inverse Wishart for Gaussian models, i.e.

IW (Ψ,m)
data−→ IW (Ψ + nΣ,m+ n).

In both cases (when a non-informative prior is used) the only free
parameter is the equivalent or imaginary sample size, which gives the
relative weight of the prior compared to the observed sample.

Marco Scutari University College London



Parameter Learning

Bayesian LASSO and Ridge Regression

Gaussian graphical models, being closely related with linear regression,
have also used ridge regression (L2 regularisation) and LASSO (L1

regularisation) in their Bayesian capacity.

LASSO corresponds to a Laplace prior on the regression coefficients,

βk |σ2 ∼ Laplace(0, σ2).

Ridge Regression corresponds to a Gaussian prior,

βk |σ2 ∼ N(0, σ2).

In both cases tuning the σ2 parameter is crucial, as it takes the role of
the λ regularisation parameter found in the original frequentist definitions
of these methods.

Other priors are also possible (Student’s t, Normal-Exponential-Gamma
for HyperLASSO); some are better at controlling sparsity than others.
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Parameter Learning

Shrinkage, James-Stein Estimation

Shrinkage estimation is based on results from James & Stein on the
estimation of the mean of a multivariate Gaussian distribution, and takes
the form

θ̃ = λt+ (1− λ)θ̂ λ ∈ [0, 1]

where the optimal λ (with respect to squared loss) can be estimated in
closed form as

λ∗ = min

(∑
k VAR(θ̂k)− COV(θ̂k, tk) + Bias(θ̂k) E(θ̂k − tk)∑

k(θ̂k − tk)2
, 1

)

The James-Stein estimator θ̃ dominates the maximum likelihood
estimator θ̂ and converges to the latter as the sample size grows. It can
be interpreted as an empirical Bayes estimator.
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Parameter Learning

Shrinkage, James-Stein Estimation

For discrete data, conditional probabilities pk |π = pk |ΠXi
=π end up

being estimated as

p̃k |π = λ∗tk |π + (1− λ∗)p̂k |π, λ∗ = min

(
1−

∑
k p̂

2
k |π

(n− 1)
∑
k(tk |π − p̂k |π)2

, 1

)
,

where t is the uniform (discrete) distribution.

For continuous data, correlations end up being estimated from the shrunk
covariance matrix Σ̃

σ̃ii = σ̂ii, σ̃ij = (1− λ∗)σ̂ij , λ∗ = min

(∑
i 6=j VAR(σ̂ij)∑

i 6=j σ̂
2
ij

, 1

)

where t is diag(Σ̂). Σ̃ is guaranteed to have full rank, so it can be safely
inverted to get partial correlations.
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Model Validation

The Big Three: Frequentist, Bayesian and Hybrid

The results of both structure learning and parameter learning should be
validated before using a graphical model for inference. Since parameters
are learned conditional on the results of structure learning, validating the
graph structure learned from the data is an essential step in graphical
modelling.

• frequentist: generating network structures using bootstrap and
model averaging (aka bagging).

• Bayesian: generating network structures from the posterior P(G |D)
using exhaustive enumeration or Markov Chain Mote Carlo
approximations.

• hybrid: generating network structures again using bootstrap, but
weighting them with their posterior probabilities when performing
model averaging.
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Model Validation

A Frequentist Approach: Friedman’s Confidence

Friedman et al. proposed an approach to model validation based
on bootstrap resampling and model averaging:

1. For b = 1, 2, . . . ,m:

1.1 sample a new data set X∗b from the original data X using
either parametric or nonparametric bootstrap;

1.2 learn the structure of the graphical model Gb = (V, Eb) from
X∗b .

2. Estimate the confidence that each possible edge ei is present
in the true network structure G0 = (V, E0) as

p̂i = P̂(ei) =
1

m

m∑
b=1

1l{ei∈Eb},

where 1l{ei∈Eb} is equal to 1 if ei ∈ Eb and 0 otherwise.
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Model Validation

A Frequentist Approach: Friedman’s Confidence
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Model Validation

A (Full) Bayesian Approach

Performing a full posterior Bayesian analysis on graph structures,
that is, working with

p̂i = E(ei|D) =
∑
G

1l{ei∈EG} P(G |D),

is considered unfeasible for networks with more than ∼ 10 nodes
because:

• an exhaustive enumeration takes too long, even for Markov
networks (and it’s even worse for Bayesian networks because
of the acyclicity constraint);

• generating graphs from the posterior distribution is feasible
but convergence of the MCMC to the stationary distribution
is far from certain (mixing is often too slow).
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Model Validation

An Hybrid Approach: the “Bayesian confidence”

Friedman’s confidence and Bayesian posterior analysis may be combined
as follows:

1. For b = 1, 2, . . . ,m:

1.1 sample a new data set X∗b from the original data X using
either parametric or nonparametric bootstrap;

1.2 learn the structure of the graphical model Gb = (V, Eb) from
X∗b .

2. Estimate the confidence for each possible edge ei as

p̂i = E(ei|D) ' 1

m

m∑
b=1

1l{ei∈Eb} P(Gb | D).

The result is a form of approximate Bayesian estimation, whose
behaviour depends on how much of the posterior probability mass is
concentrated in the subset of graph structures Gb.
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Model Validation

Identifying Significant Edges

• The confidence values p̂ = {p̂i} do not sum to one and are
dependent on one another in a nontrivial way; the value of the
confidence threshold (i.e. the minimum confidence for an edge to be
accepted as an edge of G0) is an unknown function of both the data
and the structure learning algorithm.

• The ideal/asymptotic configuration p̃ of confidence values would be

p̃i =

{
1 if ei ∈ E0

0 otherwise
,

i.e. all the networks Gb have exactly the same structure.

• Therefore, identifying the configuration p̃ “closest” to p̂ provides a
principled way of identifying significant edges and the confidence
threshold.

Marco Scutari University College London



Model Validation

The Confidence Threshold

Consider the order statistics p̃(·) and p̂(·) and the cumulative
distribution functions (CDFs) of their elements:

Fp̂(·)(x) =
1

k

k∑
i=1

1l{p̂(i)<x}

and

Fp̃(·)(x; t) =


0 if x ∈ (−∞, 0)

t if x ∈ [0, 1)

1 if x ∈ [1,+∞)

.

t corresponds to the fraction of elements of p̃(·) equal to zero and
is a measure of the fraction of non-significant edges, and provides
a threshold for separating the elements of p̃(·):

e(i) ∈ E0 ⇐⇒ p̂(i) > F−1p̃(·)
(t).
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Model Validation

The CDFs Fp̂(·)(x) and Fp̃(·)(x; t)
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One possible estimate of t is the value t̂ that minimises some
distance between Fp̂(·)(x) and Fp̃(·)(x; t); an intuitive choice is
using the L1 norm of their difference (i.e. the shaded area in the
picture on the right).

Marco Scutari University College London



Model Validation

An L1 Estimator for the Confidence Threshold

Since Fp̂(·) is piece-wise constant and Fp̃(·) is constant in [0, 1], the L1

norm of their difference simplifies to

L1

(
t; p̂(·)

)
=

∫ ∣∣Fp̂(·)(x)− Fp̃(·)(x; t)
∣∣ dx

=
∑

xi∈{{0}∪p̂(·)∪{1}}

∣∣Fp̂(·)(xi)− t
∣∣ (xi+1 − xi).

This form has two important properties:

• can be computed in linear time from p̂(·);

• its minimisation is straightforward using linear programming.

Furthermore, the L1 norm does not place as much weight on large
deviations as other norms (L2, L∞), making it robust against a wide
variety of configurations of p̂(·).
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Model Validation

A Simple Example
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Consider a graph with 4 nodes and confidence values

p̂(·) = {0.0460, 0.2242, 0.3921, 0.7689, 0.8935, 0.9439}

Then t̂ = mint L1

(
t; p̂(·)

)
= 0.4999816 and F−1

p̃(·)
(0.4999816) = 0.3921;

only three edges are considered significant.
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Model Validation

Benchmarking Performance (ALARM network)

n n/p TPR FPR TNR

100 0.196464 0.563044 0.010129 0.989871
200 0.392927 0.698261 0.010710 0.989290
500 0.982318 0.845652 0.011161 0.988839

1000 1.964637 0.898696 0.012323 0.987677
2000 3.929273 0.911304 0.015387 0.984613
5000 9.823183 0.919130 0.016677 0.983323

10000 19.646365 0.923913 0.016129 0.983871
20000 39.292731 0.952174 0.017129 0.982871

ALARM has 37 nodes, 46 edges and 509 parameters.

Marco Scutari University College London



Model Validation

Benchmarking Performance (BARLEY network)

n n/p TPR FPR TNR

100 0.000877 0.332381 0.014655 0.985345
200 0.001754 0.396905 0.008793 0.991207
500 0.004386 0.457143 0.009253 0.990747

1000 0.008772 0.495952 0.009732 0.990268
2000 0.017543 0.544524 0.010651 0.989349
5000 0.043858 0.561905 0.016130 0.983870

10000 0.087715 0.610476 0.018218 0.981782
20000 0.175431 0.638810 0.017950 0.982050

BARLEY has 48 nodes, 84 edges and 114005 parameters.
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Conclusions

Conclusions

• Graphical models combine many ideas from different fields to
allow an intuitive manipulation of high-dimensional problems
and the corresponding multivariate probability distributions.

• A sensible use of Bayesian and shrinkage techniques in
structure and parameter learning allows a great deal of
flexibility and results in good models.

• Properly validated graphical models can capture the
dependence structure of the data even with very small sample
sizes.
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G. Melançon, I. Dutour, and M. Bousquet-Mélou.
Random Generation of DAGs for Graph Drawing.
Technical Report INS-R0005, Centre for Mathematics and Computer Sciences,
Amsterdam, 2000.

J. Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

F. Pesarin and L. Salmaso.
Permutation Tests for Complex Data: Theory, Applications and Software.
Wiley, 2010.

S. J. Russell and P. Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

Marco Scutari University College London



References

References VII
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