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A Graph and a Probability Distribution

A Bayesian network (BN) [30] is defined by:

• a network structure, a directed acyclic graph 𝒢, in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution X with parameters Θ, which can be
factorised into smaller local probability distributions according to
the arcs present in 𝒢.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑝

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖} .



What About the Probability Distributions?

The choice of P(X) should such that the BN:

• can be learned efficiently from data;

• is flexible (distributional assumptions should not be too strict);

• is easy to query to perform inference.

The three most common choices in the literature (by far) [6, 17], are:

• discrete BNs (DBNs), in which X and the 𝑋𝑖 ∣ Π𝑋𝑖
are multinomial;

• Gaussian BNs (GBNs), in which X is multivariate normal and the
𝑋𝑖 ∣ Π𝑋𝑖

are univariate normal;

• conditional linear Gaussian BNs (CLGBNs), in whichX is a mixture of
multivariate normals and the 𝑋𝑖 ∣ Π𝑋𝑖

are either multinomial,
univariate normal or mixtures of normals.

It has been proved in the literature that exact inference is possible in
these three cases, hence their popularity.



Bayesian Network Structure Learning

Learning a BN ℬ = (𝒢, Θ) from a data set 𝒟 is performed in two steps:

P(ℬ ∣ 𝒟) = P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

In a Bayesian setting structure learning consists in finding the DAG with
the best P(𝒢 ∣ 𝒟). We can decompose P(𝒢 ∣ 𝒟) into

P(𝒢 ∣ 𝒟) ∝ P(𝒢) P(𝒟 ∣ 𝒢) = P(𝒢) ∫ P(𝒟 ∣ 𝒢, Θ) P(Θ ∣ 𝒢)𝑑Θ

where P(𝒢) is the prior distribution over the space of the DAGs and
P(𝒟 ∣ 𝒢) is the marginal likelihood of the data given 𝒢 averaged over all
possible parameter sets Θ; and then

P(𝒟 ∣ 𝒢) =
𝑁

∏
𝑖=1

[∫ P(𝑋𝑖 ∣ Π𝑋𝑖
, Θ𝑋𝑖

) P(Θ𝑋𝑖
∣ Π𝑋𝑖

)𝑑Θ𝑋𝑖
] .



Structure and Parameter Learning Algorithms

Themost common structure learning algorithms are score-based
algorithms, in which we are looking for the DAG that maximises a score
such as the posterior P(𝒢 ∣ 𝒟) [16] or BIC [28].

As an alternative, constraint-based structure learning algorithms use
statistical to learn which variables are conditionally independent from
each other, and they assume that the corresponding the corresponding
nodes are graphically separated.

Thorough reviews of structure learning algorithms: [31, 5].

Once the structure of the model is known, the problem of estimating the
parameters of the global distribution can be solved by estimating the
parameters of the local distributions, one at a time. We can use usual
maximum likelihood, Bayesian or regularised estimators for linear
models and contingency tables we have from classical statistics [17, 6].



Events, Evidence and Queries

A BN represents a working model of the world that a computer can
understand: we can ask it questions and have algorithms perform
probabilistic inference automatically to answer them.

Questions that can be asked are called queries and are typically about an
event of interest given some evidence. The evidence is the input to the
computer system and the event is the output. This is often called belief
update: we observe some evidence and we update our beliefs before
taking action.

The most common queries are conditional probability andmost
probable explanation queries. Both can be answered using a variety of
exact or approximate algorithms [17, 4].
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The Classic Definition of Bayesian Networks

The classic definition of a BN [17] involves:

• a network structure, a directed acyclic graph 𝒢, in which each node
corresponds to a random variable 𝑋𝑖;

• a probability distribution X and its factorisation into 𝑋𝑖 ∣ Π𝑋𝑖
.

What are we assuming when trying to learn a BN? Typically that:

• observations are independent and there are nomissing values;

• all variables are observed, that is, no latent variables introducing
confounding into the model;

• wemeasure probabilistic associations (or rather, independencies)
and we cannot necessarily interpret them as causal.

What happens if we relax those assumptions? Many extensions suddenly
become possible, see [29] for a recent review.



Missing Data

Little and Rubin [21, 26] formalised three possible patterns of
missingness:

• Missing completely at random (MCAR): complete samples are
indistinguishable from incomplete ones. The probability that a
value will be missing is independent from both observed and
missing values.

• Missing at random (MAR): incomplete samples differ from complete
ones, but the pattern of missingness is predictable from other
observed variables. The probability that a value will be missing is a
function of the observed values.

• Missing not at random (MNAR): the pattern of missingness is not
random or it is not predictable from other observed variables; the
probability that an entry will be missing depends on both observed
andmissing values. Common examples are variables that are
missing systematically or for which the pattern of missingness
depends on the missing values themselves.



Missing Data as Bayesian Networks
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Ignorable Patterns of Missingness

MCAR and MAR are ignorable. If we denote with 𝒟𝑂 and 𝒟𝑀 the
observed and unobserved portions of 𝒟, and we group all the binary
missingness indicators 𝑀𝑖 in M with parameters Ξ, then we can write

P (𝒟, M ∣ 𝒢, Θ, Ξ) = P (𝒟𝑂, 𝒟𝑀, M ∣ 𝒢, Θ, Ξ) =

∫ P(𝒟𝑂, 𝒟𝑀 ∣ 𝒢, Θ) P (M ∣ 𝒟𝑂, 𝒟𝑀, 𝒢, Ξ) 𝑑𝒟𝑀.

If the missing data are MAR then M only depends on 𝒟𝑂,

P (M ∣ 𝒟𝑂, 𝒟𝑀, 𝒢, Ξ) = P (M ∣ 𝒟𝑂, 𝒢, Ξ) ;

and if the missing data MCAR then M does not depend on 𝒟𝑂 or 𝒟𝑀,

P (M ∣ 𝒟𝑂, 𝒟𝑀, 𝒢, Ξ) = P (M ∣ 𝒢, Ξ) .

In both cases it is possible to model M from the available data. However,
this is not the case for MNAR since M depends on the unobserved 𝒟𝑀.



Parameter Learning with Incomplete Data: EM

A classic approach to handle missing data is the Expectation-
Maximisation (EM) algorithm [20]:

• the expectation (E) step consists in computing the expected values
of the sufficient statistics (such as the counts 𝑛𝑖𝑗𝑘 in discrete BNs,
partial correlations in GBNs), using exact inference to make use of
incomplete as well as complete samples;

• the maximisation (M) step takes the sufficient statistics from the
E-step and estimates the parameters of the BN, either using
maximum likelihood or Bayesian posterior estimators.

The parameter estimates are then used in the next E-step to update the
expected values of the sufficient statistics. Repeated iterations of these
two steps will in the limit return the maximum likelihood or maximum a
posteriori estimates for the parameters.

The E-step is equivalent to computing E(𝒟𝑀, 𝒟𝑂 ∣ 𝒢, Θ) and the M-step
is equivalent to maximising P(Θ ∣ 𝒢, 𝒟𝑂, 𝒟𝑀).



Parameter Learning with Incomplete Data: DA

Data Augmentation (DA) [24, 32] is quite similar, but instead of
converging iteratively to a single set of parameter estimates it uses Gibbs
Sampling to generate values from the posterior distributions of both 𝒟𝑀

and Θ. The two steps are as follows:

• in the imputation (I) step the data are completed with values drawn
from the predictive distributions of the missing values;

• in the parameter (P) estimation step a parameter value is drawn
from the posterior distribution of Θ conditional on the completed
data from the I-step.

Formally, we define the augmented parameter vector {𝒟𝑀, Θ}
containing both the missing values and the parameters of the BN. Given
an initial set of values, DA updates each element of {𝒟𝑀, Θ} by
sampling a new value for eachmissing value from P(𝒟𝑀

𝑖 ∣ 𝒟𝑀
−𝑖, Θ), and

by sampling a new value for each parameter from P(Θ𝑖 ∣ Θ−𝑖, 𝒟𝑀), each
in turn.



Structure Learning in the Presence of Missing Data

Learning the structure of a BN from incomplete data is computationally
unfeasible because we need to perform a joint optimisation over the
missing values and the parameters to score each candidate network. The
maximum a posteriori DAGmaximises

P (𝒟 ∣ 𝒢) = ∫ P (𝒟𝑂, 𝒟𝑀 ∣ 𝒢, Θ) P (Θ ∣ 𝒢) 𝑑Θ =

= ∫ P (𝒟𝑀 ∣ 𝒟𝑂, 𝒢, Θ)⏟⏟⏟⏟⏟⏟⏟⏟⏟
missing data

P (𝒟𝑂 ∣ 𝒢, Θ)⏟⏟⏟⏟⏟⏟⏟
observed data

P (Θ ∣ 𝒢) 𝑑Θ⏟⏟⏟⏟⏟
averaging over parameters

.

A full Bayesian approach would require averaging over all the possible
configurations of the missing data, leading to

P (𝒟 ∣ 𝒢) = ∬ P (𝒟𝑀 ∣ 𝒟𝑂, 𝒢, Θ) P (𝒟𝑂 ∣ 𝒢, Θ) P (Θ ∣ 𝒢) 𝑑Θ 𝑑𝒟𝑀.

which has one one extra dimension for eachmissing value. An additional
problem is that P(𝒟𝑀 ∣ 𝒟𝑂, 𝒢, Θ) does not factorise in the general case.



Structure Learning from Incomplete Data: Structural EM

The Structural EM algorithm [9] makes structure learning
computationally feasible by searching for the best structure inside of EM,
instead of embedding EM inside a structure learning algorithm. It
consists of two steps like the classic EM:

• in the E-step, we complete the data by computing the expected
sufficient statistics using the current network structure;

• in the M-step, we find the structure that maximises the expected
score function for the completed data.

Since the scoring in the M-step uses the completed data , structure
learning can be implemented efficiently using standard algorithms. The
original proposal by [9] used BIC and greedy search; [10] later extended
SEM to a fully Bayesian approach based posterior scores, and proved the
convergence of the resulting algorithm.



Structure Learning from Incomplete Data: Approximations

An alternative is to use scores that approximate P(𝒟 ∣ 𝒢) and that are
decomposable and efficient to compute even on incomplete data. Some
options are:

• The variational-Bayesian EM from [1] that maximises a variational
approximation of P(𝒟 ∣ 𝒢), which in turn is a lower bound to the
true P(𝒟 ∣ 𝒢).

• Replacing BIC with the node-average penalised log-likelihood
computed from locally-complete observations as suggested in [2].

• Using mixtures of truncated exponentials [7] to approximate the
distributions of variables that are not completely observed.



What About Latent Variables?

Note that we can work on latent variables using similar approaches if 𝒢 is
fixed and we just need to learn Θ. A recent example is given in [34], who
shows it is possible to learn the domain of a latent discrete variable as
well as the associated parameters as long as it has observed parents and
children. Several other examples are discussed in the context of dynamic
BNs in [22].

If 𝒢 is not fixed, we need to learn:

• howmany latent variables we are dealing with;

• their domains;

• how they are connected to the observed variables

at the same time, which is not feasible in general.



Dynamic Bayesian Networks

Dynamic BNs (DBNs) [22] combine classic BNs and Markov processes to
model dynamic data in which each individual is measured repeatedly
over time, such as longitudinal or panel data.

Assume we have one set X(𝑡) of random variables for each of 𝑡 = 1, … , 𝑇
time points. We canmodel it as a DBN with a Markov process of the form

P (X(0), … , X(𝑇 )) = P (X(0))
𝑇

∏
𝑡=1

P (X(𝑡) ∣ X(𝑡−1)) .

where P(X(0)) gives the initial state of the process and P(X(𝑡) ∣ X(𝑡−1))
defines the transition between times 𝑡 − 1 and 𝑡. Whenmodelling X(𝑡),
the nodes in X(𝑡−1) only appear in the conditioning; we take them to be
essentially fixed and to have no free parameters, so we leave them as
root nodes.



Dynamic Bayesian Networks

We canmodel this transition with a 2-time BN (2TBN) defined over
(X(𝑡−1), X(𝑡)), in which we naturally assume that any arc between a node
in 𝑡 − 1 and a node in 𝑡 must necessarily be directed towards the node in
𝑡 following the arrow of time.

Wemay also want to assume that there are no arcs connecting two
nodes in the same 𝑡 or, in other words, no instantaneous dependencies.

We can then write the decomposition into local distributions

P (X(𝑡) ∣ X(𝑡−1)) =
𝑁

∏
𝑖=1

P (𝑋(𝑡)
𝑖 ∣ Π𝑋(𝑡)

𝑖
) ,

and we usually assume that the parameters associated with the local
distributions do not change over time to make the process
time-homogeneous.



Many Models are Dynamic Bayesian Networks
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Many Models are Dynamic Bayesian Networks: HMMs

Hidden Markov models (HMMs) [36] are one of the most widespread
approaches to model phenomena with hidden state, that is, in which the
behaviour of the observed variables X depends on that of one or more
discrete latent variables Z as well as on other variables in X.

In DBN terms, an HMMmodel with 𝑀 latent variables can be written as

P (X(𝑡) ∣ X(𝑡−1), Z(𝑡)) =
𝑁

∏
𝑖=1

P (𝑋(𝑡)
𝑖 ∣ Π𝑋(𝑡)

𝑖
, Z(𝑡))

P (Z(𝑡)) =
𝑀
∏
𝑗=1

P (𝑍(𝑡)
𝑗 ∣ Π𝑍(𝑡)

𝑗
) ,

with the restriction that the parents of 𝑍(𝑡)
𝑗 can only be other latent

variables. In the vast majority of the literature all variables are assumed
to be discrete. Depending on the choice of Π𝑍(𝑡)

𝑗
, we can obtain various

HMM variants such as hierarchical HMMs [8] and factorial HMMs [12].



Many Models are Dynamic Bayesian Networks: VARs

Vector auto-regressive models (VARs) [3] are a straightforward
multivariate extension of univariate auto-regressive time series for
continuous variables.
VARs are defined as

X(𝑡) = 𝐴1X(𝑡−1) + … + 𝐴𝐿X(𝑡−𝐿) + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0, Σ),

for some fixed Markov order 𝐿. We can rewrite that as

X(𝑡) ∣ X(𝑡−1), … , X(𝑡−𝐿) ∼ 𝑁 (𝐴1X(𝑡−1) + … + 𝐴𝐿X(𝑡−𝐿), 𝜀𝑡)

and then restrict the parents of each 𝑋(𝑡)
𝑖 to those for which the

corresponding regression coefficients in 𝐴1, … , 𝐴𝐿 are different from
zero using the one-to-one correspondence between regression
coefficients and partial correlations [33]. Formally, 𝑋(𝑡−𝑙)

𝑗 ∈ Π𝑋(𝑡)
𝑖
if and

only if 𝐴𝑙[𝑖, 𝑗] ≠ 0, which makes it possible to write a VAR as a Gaussian
DBN.



Many Models are Dynamic Bayesian Networks: Kalman Filters

Kalman filters [15] combine traits of both HMMs and VARs, as discussed
in depth in [11] and [25]: like VARs, they are linear Gaussian DBNs; but
they also have latent variables like HMMs.
In their simplest form, Kalman Filters include a layer of one or more
latent variables that model the unobservable part of the phenomenon,

Z(𝑡) = 𝐴Z(𝑡−1) + 𝐵U(𝑡) + 𝜁𝑡, 𝜁𝑡 ∼ 𝑁(0, Ψ)

feeding into one or more observed variables

X(𝑡) = 𝐶Z(𝑡) + 𝐷U(𝑡) + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0, Σ)

with independent Gaussian noise added in both layers. Both layers often
include additional (continuous) explanatory variables U and can also be
augmented with (discrete) switching variables to allow for different
regimes as in [13, 14]. If we exclude the latter, the assumption is that the
system is jointly Gaussian: that makes it possible to frame Kalman filters
as DBNs in the same way we did for VARs.



Learning Bayesian Networks as Causal Models

Learning causal models [23], especially from observational data,
presents significant challenges. In particular, three additional
assumptions are needed:

• Causal Markov assumption: each variable 𝑋𝑖 ∈ X is conditionally
independent of its non-effects, both direct and indirect, given its
direct causes.

• Faithfulness: there must exist a DAG which is faithful to the
probability distribution P of X, so that the only dependencies in P
are those arising from d-separation in the DAG.

• Causal Sufficiency: there must be no latent variables (unobserved
variables influencing the variables in the network) acting as
confounding factors. Such variables may induce spurious
correlations between the observed variables, thus introducing bias
in the causal network.

These assumptions are difficult to verify in real-world settings, as the set
of the potential confounding factors is not usually known.



Why is Learning Causal Bayesian Networks Important?

From a practical perspective, ensuring that a BN we learn from data
correctly models the underlying cause-effect relationships between the
variables is important because:

• it improves our understanding of the underlying phenomenon;

• it allows us to target interventions to effect some desirable change
to the underlying phenomenon;

• it allows us to reason about counterfactuals using the BN.

Identifying the correct targets for interventions is the foundation upon
which quantitative policy decision making is built.

A counterfactual [23] is an “if” statement in which the “if” portion is
untrue or unrealised. The “if” portion of a counterfactual is called the
hypothetical condition, or more often, the antecedent. We use
counterfactuals to emphasise our wish to compare two outcomes under
the exact same conditions, differing only in one aspect: the antecedent.



Counterfactual Fairness

Counterfactual Fairness: a sensitive attribute 𝐴 a should not be a cause
of a target variable in any (statistical) individual [27, 19]. In other words,
changing 𝐴 while holding things which are not causally dependent on 𝐴
constant will not change the distribution of 𝑌.

Formally: a predictor ̂𝑌 of 𝑌 is counterfactually fair given the sensitive
attribute 𝐴 = 𝑎 and any observed variables X if

P( ̂𝑌𝐴 ← 𝑎 = 𝑦 ∣ X = x, 𝐴 = 𝑎) = P( ̂𝑌𝐴 ← 𝑎′ = 𝑦 ∣ X = x, 𝐴 = 𝑎)

for all 𝑦 and 𝑎′ ≠ 𝑎.

In graphical terms: ̂𝑌 is counterfactually fair if it is a function of the
non-descendants of 𝐴 in causal network.
This condition is too strong for most practical applications because it
requires that the distributions are exactly the same for all values of 𝐴.



Approximate Counterfactual Fairness

Relaxing the definition of counterfactual fairness by introducing some
tolerance in the comparison of the distributions of ̂𝑌 under different
values of 𝐴 gives:

Approximate Counterfactual Fairness: a predictor 𝑓(X, 𝐴) satisfies
(𝜀, 𝛿)-approximate counterfactual fairness if, given the sensitive attribute
𝐴 = 𝑎 and any instantiation X = x, we have that:

P (|𝑓(X𝐴 ← 𝑎, 𝑎) − 𝑓(X𝐴 ← 𝑎′, 𝑎′)| ⩽ 𝜀 ∣ X = x, 𝐴 = 𝑎) > 1 − 𝛿

for all 𝑎′ ≠ 𝑎.

In other words, we allow some degree of unfairness but we assume that
the predictor 𝑓(X, 𝐴) is mostly fair most of the time. This is common in
all fairness literature [18, 35, etc.], regardless of the statistical model.
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Bayesian Networks and Modern Machine Learning

• BNs provide an intuitive representation of the relationships linking
heterogeneous sets of variables, which we can use for qualitative and
causal reasoning.

• BNs subsume a large number of probabilistic models and thus can
readily incorporate other techniques from statistics and computer
science.

• BNs can be extended to handle data with complex structure such as
multivariate time series and incomplete data, while taking advantage
of standard learning and inference approaches.

• BNs also provide a rigorous solution to the problem of producing fair
predictions that do not discriminate individuals based on sensitive
attributes.
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Any questions?
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