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Natural Systems are Complex Systems

Natural phenomena can only be modelled as complex systems in which

• there are many components that interact with each other;

• their interplay produces non-obvious behaviour;

• they develop over time and space in response to the surrounding
environment.

Two scientific research fields in which this has increasingly become
apparent are environmental sciences and biological sciences (genetics,
systems biology, etc.).

Classic statistical models that focus on explaining or predicting a single
component of such phenomena often fail to capture the big picture.
Network models, on the other hand, focus on capturing the interplay
between components from a systems perspective, without necessarily
restricting their attention to a single one.



Bayesian Networks as a Model for Complex Systems

Bayesian networks (BNs) [9] implement this systems approach with:

• a network structure, a directed acyclic graph in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution P(X) with parameters Θ, which
can be factorised into smaller local probability distributions
according to the arcs present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖}.



Why Use Bayesian Networks?

Four main reasons:

• Both the network structure and the parameters can be learned
efficiently from data [18]; and available prior information can be
incorporated in the learning process as well [2, 13, 4].

• The network structure provides a high-level qualitative view of the
phenomenon that can easily be used by non-statisticians.

• Automated reasoning can quantify the probability of any event of
interest given available evidence using standard algorithms.

• With some additional assumptions BNs can be interpreted as causal
models [14].

Several applications in environmental sciences: studying species
dynamics [1, 19]; the impact of climate change on groundwater [12]; how
to best manage water reservoirs under infrequent rainfalls [15]; the
effects of El Niño [17]; and the impact of pollution [20].



Modelling Air Pollution, Climate and Health Data
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Modelling Air Pollution, Climate and Health Data

C. Vitolo, M. Scutari, M. Ghalaieny, A. Tucker and A. Russell (2018).
“Modeling Air Pollution, Climate, and Health Data Using Bayesian
Networks: A Case Study of the English Regions.” Earth and Space
Science, 5(4), 76–88. [20]

• Almost 50 million records spanning the period 1981–2014.

• 24 features: various air pollutants (O3, PM2.5, PM10, SO2, NO2, CO)
measured in 162 monitoring stations, their geographical
characteristics (latitude, longitude, latitude, region and zone type),
weather (wind speed and direction, temperature, rainfall, solar
radiation, boundary layer height), demography andmortality rates.

• Themodel represents known processes in atmospheric chemistry
with a good degree of accuracy.



Climate Data Analysis



Climate Data Analysis

M. Scutari, C. E. Graafland and J. M. Gutiérrez (2019). “Who Learns Better
Bayesian Network Structures: Accuracy and Speed of Structure Learning
Algorithms.” International Journal of Approximate Reasoning,
115:235–253. [17]

• Monthly surface temperature values on a global 10∘-resolution regular
grid from 1981 to 2010.

• Local dependencies are strong since they are the result of the
short-term evolution of atmospheric thermodynamic processes.
Distant teleconnected dependencies resulting from large-scale
atmospheric oscillation patterns are in general weaker, but they are
key for understanding regional climate variability.

• Altered probabilities of high temperatures in the Indian Ocean when El
Niño-like evidence is introduced in the BN.



Assumptions and Limitations of Bayesian Networks

Two assumptions that are typically made in BN learning are particularly
problematic:

• Complete Data: the data contain nomissing values.

• Independent Observations: observations are jointly independent of
each other.

Other common assumptions that may be problematic:

• Categorical variables are multinomial, continuous variables are
Gaussian or mixtures of Gaussians.

• The network is sparse, with a number of arcs comparable to the
number of nodes.

The computational complexity of learning can also be an issue: linear in
the sample size but quadratic in the number of variables (and that is
assuming the network is sparse).



Learning from Incomplete Data

We can learn the network structure from incomplete data using a
variation of the EM algorithm called Structural EM [5, 6]:

• in the E-step, we complete the data by computing the expected
sufficient statistics using the current network structure;

• in the M-step, we find the structure that maximises the expected
likelihood or posterior probability for the completed data.

The parameters can be learned with the classic EM [10].

However:

• The Structural EM is extremely computationally intensive; the
shortcuts used in practical implementations void its theoretical
guarantees.

• There is no literature on this for continuous or hybrid data, only for
categorical data.

• Data are assumed to bemissing (completely) at random.



Take the Spatio-Temporal Structure of the Data into Account

For instance, the local distribution of a Gaussian variable with
continuous parents is assumed to be

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝛽𝑋𝑖
+ 𝜀𝑋𝑖

, 𝜀𝑋𝑖
∼ 𝑁 (0, Σ𝑋𝑖

) , Σ𝑋𝑖
= 𝜎2

𝑋𝑖
I𝑛;

all the parameter estimators and goodness-of-fit scores are borrowed
from classic linear regression.

The logical solution would be to use an appropriate covariance structure
[3] such as an isotropic exponential structure

Σ𝑋𝑖
= [𝜎𝑗𝑘] 𝜎𝑗𝑘 = 𝜎2𝑒𝑥𝑝 {−𝑑𝑗𝑘/𝜃}

instead of 𝜎𝑗𝑘 = 0 for all 𝑗 ≠ 𝑘. It comes at a cost in terms of speed, but it
is feasible unlike the MCMC approaches for state space models such as
[7].



Improve Computational Efficiency

• Many algorithms display
embarrassing or coarse-grained
parallelism [16].

• There are many approaches in
statistical genetics that optimise
sequential linear model
evaluation [11], including for
correlated observations.

• For discrete data, there are
efficient data structures that
can be leveraged [8].

sample size (in millions, log−scale)
no

rm
al

is
ed

 r
un

ni
ng

 ti
m

e

0.0

0.2

0.4

0.6

0.8

1.0

1 2 5 10 20 50

● ● ● ● ● ●

●

●
● ● ● ●●

●

● ● ● ●

●

●

●

●
● ●

00:03 00:07 00:19 00:40 01:26 03:5200:03 00:07 00:19 00:40 01:26 03:5200:03 00:07 00:19 00:40 01:26 03:52

QR
1P
2P
PRED

(Classic closed-form results can
help too [18]!)



Conclusions and Remarks

• BNs are naturally suited to modelling complex systems as networks.

• BNs have several key advantages: they can incorporate prior
information while learning them from data; they are easy to interpret
for non-statisticians; and they allow automated and causal reasoning.

• Their fundamental assumptions must be weakened to improve their
usability in environmental sciences, to handle incomplete and
spatio-temporal data effectively.

• Computational complexity is also an issue, but there is literature to
draw from for inspiration.
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Thanks!

Any questions?
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