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Causality is a Network

Machine learning creates black boxes that use probabilistic associations
for prediction. Scientific questions are inherently causal.

We have [13, 21] a rigorous theory of
causality that uses directed (acyclic)
graphs (DAGs) to represent causes and
effects. With it, we can reason about

• what we see,

• affecting change,

• hypothetical situations.

How can we learn causal DAGs from
clinical data?



Causal Discovery Meets Data

Learning a causal networkmeans learning its structure𝒢 and parameters
Θ, much like Bayesian networks:

P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

We used to ask domain experts for information [6, 7]; now we rely more
andmore on learning algorithms and the data 𝒟 [24].

What we assume.
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The actual data.



Causal Network Models

Bayesian networks [23] are defined by:

• a network structure, a directed acyclic graph (DAG) 𝒢, in which each
node corresponds to a random variable 𝑋𝑖;

• a global probability distribution X with parameters Θ, which
factorises into smaller local probability distributions according to
the arcs in 𝒢:

P(X, Θ) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖}.

Causal networks are Bayesian networks with extra assumptions, such as
causal sufficiency, that allow for interpreting arcs as causal effects.
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The Role of Clinical Experts

First, there were expert systems [3, 4] compiled with clinicians.

Electronic Health
Records

Clinical Trials

Academic
Literature

Clinicians Expert
Systems

The clinicians distilled all the available knowledge into a set of causal
effects (𝒢) and their effect sizes (Θ).



Enter Machine Learning

However, clinicians cannot scale to complex phenomena and often do
not agree with each other. Machine learning then took a completely
data-driven approach.

Network
Model

Data Marchine Learning
Algorithm

This is the current paradigm of structure learning (for Bayesian networks)
and causal discovery (for causal networks) [14, 28]. Many, many such
algorithms in the literature [24].



The Limits of a Purely Data-Driven Approach

• We do not have enough data to capture the complexity of modern
clinical problems.

• Causal discovery algorithms have unrealistic assumptions and are
(mostly) unusable on clinical data.

• Most of the field has forgotten the accumulated statistical wisdom on
the design of experiments, hierarchical data, model validation, etc.

• There is an excess focus on artificial benchmarks that have nothing to
dowith the challenges and the risk evaluations of real clinical practice.

• The expertise of clinicians is under-appreciated and under-utilised in
driving causal discovery.



Producing Realistic, Useful Models
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Technical Challenges: Missing Data and Latent Confounders

Causal networks require causal sufficiency: no latent confounders. Both
sampling bias and incomplete data are such if left unmodelled.

Selection diagrams [15] Missingness graphs [20]

MCAR
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MNAR
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Technical Challenges: Federated Learning

How do we aggregate data across centres when we cannot share it?

• Score-based: computing local scores for parent sets in the centres
and aggregating them tominimise regret [18, 19].

• Constraint-based: aggregating partial networks learned using
conditional independence tests [12].

The “true network” may be different in each centre, but causal discovery
assumes that there is a single one that is valid for all centres...



Technical Challenges: Structured Populations

Individuals are not independent and identically distributed!

• Panel data are correlated over time.

• Epidemiological data are correlated over space.

• Subgroups of patients with differential treatment effects.

• Centre heterogeneity is unavoidable in multi-centre clinical trials.

And yet mostly 𝑋𝑖 = 𝑓(Π𝑋𝑖
; Θ𝑋𝑖

) + 𝜀𝑖 with COV(𝜀𝑖,𝑗, 𝜀𝑖,𝑘) = 0.

• We need hierarchical models sharing information between centres,
as in [1, 27], or to borrow ideas from federated learning.

• We definitely need to borrowmodels for state-space data from the
ecological modelling literature.



Technical Challenges: Evaluation and Validation

MLOps [26] makes an important distinction:

• Model evaluation: is the statistical performance good?

• Model validation: what about the domain metrics we care about?

Machine learning only cares about the former, and even then there is no
consensus on how to do that.

• Many existing metrics fail to exhibit a strong correlation with the
quality of the approximation to the true model posterior [17].

• Different causal structural metrics with contrasting interpretations
[11]. SID [22] is inconsistent and very costly to compute.

• Even quantitative metrics such as [5] are not framed in clinical terms
(say, ATE). An exception may be [8].
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Lymph Node Metastases in Endometrial Cancer Patients

• Ten clinics in the European
Network for Individualised
Treatment of Endometrial
Cancer (ENITEC).

• Key Issues:

• Small sample size.
• Highmissingness ratio.
• Centre heterogeneity.

• Modelling:

• Prior knowledge from
clinicians.

• Model averaging.
• MNARmissingness.
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Disregarding the Missing-Not-At-Random Mechanism

PR
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Baseline model learned with SEM [9, 10] from our earlier AIxIA paper [29].



Modelling the Missing-Not-At-Random Mechanism
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Unbiasedmodel learned with HC-aIPW [16] in our AIME paper [30].



CVDs in Adolescents and Young Adults with Breast Cancer

• A population cohort and a clinical
cohort from Istituto Nazionale dei
Tumori di Milano.

• Key Issues:

• Different sampling criteria.
• Different sets of variables.
• Low prevalence / incidence.

• Modelling:

• Prior knowledge from clinicians.
• Model averaging.
• MNARmissingness.
• Sampling diagrams.
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Modelling Multiple Cohorts Together
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Model learned with SEM in our AIxIA paper [2].



Infodemiology: Dermatological and Mental Conditions

Google COVID-19 Open Data: 400 health 
conditions, 4 countries (county-level in 
the US), weekly search frequencies for 

2020-2023 normalised by NLP.

Monitoring stations
in 1470 counties with
hourly measurements
of NOx, SOx, O3, PMx.

Weather stations
in 1652 counties with
and satellite images.

Socio-economic data
at the population level
to avoid confounding.

Key Issues: incomplete and heterogeneous state space-data (≈53k
observations over ≈500 US counties and 134 weeks.)
Modelling: GLS, IRLS, node-averaged likelihood, model averaging.



Disregarding the State-Space Nature of the Data
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Biasedmodel learned with a dynamic network as in my previous work [25].



Failing on Most Counts

Residuals are reasonably free from autocorrelation, but they are full of
spatial correlation and heteroscedastic!

lag 1 lag 2 lag 3 lag 4 space heteroscedastic
ANX 0.024 0.000 0.000 0.048 0.460 4 × 10-169

DEP 0.016 0.000 0.000 0.000 0.325 1 × 10-212

DER 0.032 0.000 0.000 0.000 0.754 0
OBE 0.000 0.000 0.000 0.000 0.563 6 × 10-100

SLD 0.092 0.007 0.007 0.000 0.381 1 × 10-154

Reality chooses a better model:

• Adding a spatial correlation matrix: BF = 81.59.

• Adding different standard errors for different states: BF = 25.31.

• Reducing sparsity to let known arcs in: BF = 72.15.



Modelling the State-Space Nature of the Data
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Unbiasedmodel that I am currently working to improve.
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Conclusions

• Causal networks are a principled and versatile tool to model clinical
data in their complexity.

• Statistical and clinical experts are fundamental: using causal
networks as a purely machine learning model is doomed to fail.

• State-space data, mixed variable types, missing values, population
structure, non-stationarity: we can deal with them!

• There are technical challenges in translating clinical requirements and
knowledge into causal discovery approaches, but we are actively
working on them.
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That's all!

Happy to discuss in more detail.
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