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BAYESIAN NETWORKS

Preoperative Grade

Postoperative Grade

A Bayesian network [17, BN] is defined by:
« adirected acyclic graph (DAG) G where each node Chemtherapy

CA125

il

maps to a random variable X; € X;

« aprobability distribution P(X; ©), factorising into
smaller local distributions following the arcs in G.

CMTRI ,pT\
The DAG G expresses the conditional independencies ;
among the X, through graphical separation, leading to:

N -ivallyr
P(X)=[]P(X;|1x;0x,), !
=1 .

Ty, = {parents of X, }.

Survival 5yr

Endometrial cancer, AIME 2023 [21].



KEY PROPERTIES ON BAYESIAN NETWORK

Markov Blankets: Equivalence Classes: Path Analysis:
Feature Selection Identifiability Mediation

Preoperative Grade Preoperative Grade Preoperative Grade
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Postoperative Grade Postoperative Grade

2

Chemotherapy

Recurrence

Survival 1yr Survival 1yr
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FROM BAYESIAN NETWORKS TO STRUCTURAL CAUSAL MODELS

A structural causal model [1, SCM] is defined by:

Chemothe apy

}’

« some endogenous (deterministic) variables X;

» some exogenous (stochastic) variables U,

» aDAG g with nodes mappingto X,,U; € XU U;

« onestructural equation f;(-) for each X;.

Then the X,are defined by the structural equations: v

%

— f (HX , ) HX C X Rec e Myometrallnvaslon

Survival 5yr

i

Also structural equations models (SEMs) or causal BNs. !\> m



Bayesian Networks

THEY LooK SIMILAR, BUT THEY HAVE COMPLETELY DIFFERENT SEMANTICS

Structural Causal Models

Probabilistic independence relationships
are symmetric: if X; I X, then X, 1L X,.

Causes and effects are not symmetric:
treating symptoms does not cure the un-
derlying disease.

X, as generalised linear models [9, 17]:
9(X;) = n(Ilx,) + &; main effects only.

X, as additive noise models [15, ANMs]:
fi(HXZ_, U, ~ fi(HXZ_) + U,, main effects
only, fitted with regularised regressions.

Heavily rely on sufficiency (assume no
latent confounders).

Heavily rely on causal sufficiency (assume
no latent confounders).




THE LADDER OF CAUSATION

ACTIVITY:

QUESTIONS:

3. COUNTERFACTUALS

Imagining, Retcospection, Understanding.
e Lo IV

Was it f X had not
ety Wharit T s itaenyy

i Was it the aspiia that stopped my headach

Would Kennedy be alive sf Oswald had o =1
illed him? Whatif 1 had not smoked for the:
st 2 years?

ACTIVITY:

EXAMPLES:

QUESTIONS:

2. INTERVENTION

Doing, lnrervening

Whatif Lo ...? Hor?
(What would Y beif 1do X2
How can [ make Y happen?)

I ke, il beiche b e
Whatif we ban cigaetes?

ACTVITY:
QUESTIONS:

: What docs

1. ASSOCIATION

Secing, Observiog.
Whatf Liee.?

(How ae the variables related?

How would secing X chang my belief in Y7)

ymprom tell me about adiscase?
What does a survey tell us about the
clection results?

These network models can be used at various levels of
sophistication, the step in the Ladder of Causation [14].

« BNssupport levels 1-2 (Association and Intervention).
« SCMs support also support level 3 (Counterfactuals).

« SCMs can express latent confounding by linking
exogenous variables with multiple endogenous
variables. BNs cannot do that well, ad-hoc hacks are
needed [8].




INTERVENTIONS
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Manipulate variables to set them to a single value (“hard”) or a distribution (“soft”).




COUNTERFACTUAL

P(Survival 1yr’|do(CA125" = ¢’), CA125 = ¢, Survival lyr = s)
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Imagine a world that did not actually occur, but could have: what would have been different?




BAYESIAN NETWORK INFERENCE

Bayesian network inference automates quantitative assessments of probabilistic and causal
inference statements in BNs and SCMs. You ask queries on some event given some evidence

you have observed, and you get the answer.

Exact Inference Approximate Inference
Based on the junction tree algorithm. Based on MC or MCMC sampling.
Heavier computational cost. More scalable.
Akin to symbolic computations. Like posterior inference, answers have

They provide exact answers. simulation noise.




INFERENCE FOR REFINEMENT AND VALIDATION

Quantitative
information
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STRUCTURAL CAUSAL MODELS VS EXPERIMENTAL DESIGN

SCMs Trial Design Nuance
DAGs as prior Trial design as prior. DAG encodes prior causal knowledge;
specification. informs trial design.
Intervention. Treatment assignment. Bayesian belief updates post-trial.
Backdoor adjustment.  Randomisation. Information on known confounders.
Colliders. Stratification. Collider bias, sub-populations.
Causal Effects. Treatment Effects. Bayesian effect estimates.

Transportability. External validity. Generalising to different populations.




MODELLING MISSINGNESS

» All missing data patterns identified by Rubin [12]
have a graphical representation in augmented
SCMs called missingness graphs [13].

« Each partially-observed X; is splitinto three
nodes: My (complete, but latent), Sy

(incomplete, but observed) and Rx. (binary
missingness indicators). Ry — Sx « Mx .

» The parents of R, determine the pattern: MCAR

EHL
(no parents), MAR (only fully-observed X s),

MNAR (partially-observed or latent variables). é q

» Expectation-Maximisation is most common [16].



MODELLING SAMPLING BilAS

« Sampling bias has a graphical representation in
augmented SCMs called selection diagrams [10].

« Treated like a latent confounder: each source of
bias is represented as an exogenous variable
liked to several endogenous variables.

o G-Transportability of study findings from a
source population to a different target
population, especially when the study is an RCT
and the target population is observational data.
Example: Breast cancer + CVD [4, 3].




MODELLING TIME
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Vector auto-regressive time series, Kalman filters, hidden Markov models can all be cast as
dynamic SCMs [16]. Continuous-time SCMs are also possible [5].




CAusAL DISCOVERY: ALGORITHMS

Class Algorithms Approach
) PC [7] Conditional independence tests to prune
Constraint-Based
RFCI [8] the search space into an equivalence class.
LiINGAM [19] Navigating the DAG space to find the op-
Score-Based
GES [6] timal SCM, leveraging the asymmetries in

residuals and/or regularisation.

NOTEARS [22] Minimising residual variance via gradient
DAGMA [2] descent, with constraints for SCM acyclicity
and sparsity.

Differentiable




CAusAL DISCOVERY: IDENTIFIABILITY

Many assumptions ensure that causal v
directions are correctly identified:

Gaussian

« Data from multiple environments [10].
» Data with different interventions [11] !
€
» Non-Gaussianity [19]. ;S : :
« Heteroscedasticity [20]. ,
« Spatial correlations, non-IID data [18]. g « .
Randomisation also works as usual. ;:




THAT'S ALL!
HAPPY TO DISCUSS IN MORE DETAIL.
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PRIMARY IMMUNODEFICIENCIES

« Goal: unravelling the interplay between clinical diagnosis codes linked to combined
immunodeficiencies (CID) and common variable immunodeficiencies (CVID).

« Main variables: clinical history with ICD codes from 4 different cohorts, each with its own

inclusion/exclusion criteria. ICD codes are transformed into phenotypes.

« Possible confounders: hopefully none, given we condition on all clinical history and we use
US nation-wide data. Matched cases/controls using propensity scores from demographics.

« Size: ~ 800/800/2.3k/20k observations and ~ 550/550,/400/300 variables in cohorts 1-4.

» Missing values: none!

Following up on a previous effort based on a custom deep-learning architecture [1].



PREPROCESSING: DATA AND ICD CoDES

Discovery

Cohort 1 (Raw Data)
797 CID cases with pneumonia
797 controls with pneumonia

Data Preparation

Replication

Cohort 2 (Raw Data)
797 CID cases with pneumonia
797 random controls, with or
without pneumonia

Cohort 3 (Raw Data)
2,312 CID cases with (N=797)
or without pneumonia
2,312 random controls, with or
without pneumonia

Cohort 4 (Raw Data)

19,924 CID/CVID cases with (N=2,350)

or without pneumonia
19,924 random controls,
with or without pneumonia

Feature (ICD code) Selection

« Optum data Table combinations

« Patient demographics and
medical claims indentification

Data Engineering

« ICD-9 to ICD-10 code extraction
and initial mapping

« Hierarchical ICD code mapping

Futher Pre-Processing

« Cleaning confounders

« Missingness assessment

« One-hot encoding/Embeddings

Propensity Score Matching
» Matched controls across all
cohorts




A. Cohorts 1-4 (N=47,660
CID/CVID cases and controls):
Clinical history ICD data

&

B. ICD to Clinical
Phenotype (CP) conversion

&

C. Dimensionality reduction
(Sparse CP variables; collinear CP
variables via Pearson X?)

DATA ANALYSIS

-

Causal Modelling

~

F. Causal Discovery:
Parameter Learning by
Maximum Likelihood Estimation

=

G. Model performance
and generalizability
evaluations

i

&

E. Consensus DAG
across each cohort

i

D. Causal Discovery:
Structure Learning (tabu search,
BIC) and Model Ensemble
(bootstrapping, model aggregation)

H. Causal Inference:
Interventions and Odds
Ratio analysis

&

1. Evaluation by
domain experts (clinical
immunologists)




THE ROLE OF CLINICAL IMMUNOLOGISTS

« Telling phenotypes apart.
o With finite sample sizes and so many variables, some end up being numerically equivalent
(pair-wise association p-value ~ 0).
» They explain CID/CVID equally well.
» Which ones make the most (clinical) sense to keep?

« Validating the causal networks:

» Reviewing the consensus causal networks from each cohort.

o Confirming that the networks really are dense.

o Assessing the Markov blankets of CID/CVID, which identify direct precursors of CID/CVID
diagnoses as parents.

We consulted them independently, effectively handling their observations as an ensemble

expert model.
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DERMATITIS, MENTAL CONDITIONS, POLLUTION AND CLIMATE CHANGE

« Goal: understanding the effect of pollution and changing weather patterns on mental
conditions and dermatitis, and the cascading effect of mental conditions on dermatitis.

« Main variables: 3 pollutants (NO,, SO,, PM, ¢), 3 mental conditions (anxiety, depression,
sleep disorders), obesity, dermatitis, weather patterns (temperatures, wind speed,
precipitations; both mean and spread).

« Possible confounders: education level, unemployment, income, household size and
population density.

» Size: ~53k observations over ~500 US counties and 134 weeks.
« Missing values: between 0% (the conditions) and 55% (pollutants).

Following up on a previous infodemiology study [3].



DATA SOURCES: GOOGLE TRENDS, NOAA, EPA, US CENSUS

Google

Google COVID-19 Open Data: 400 health
conditions, 4 countries (county-level in
the US), weekly search frequencies for

2020-2023 normalised by NLP.

Monitoring stations
in 1470 counties with
hourly measurements
of NOx, SOx, 03, PMx.

Weather stations
in 1652 counties with
and satellite images.

Socio-economic data
at the population level
to avoid confounding.




THE DIMENSIONS OF THE DATA

Spatial Structure

State-Space
Structure

Temporal Structure
(dynamic BNs)

—— (XY X{ (x0)
*y/\/ x‘H -




GIRLS NETWORKS: GLS + IRLS

Learned a dynamic network encoding a first-order VAR process:

COV(ey) = WiTtZi(L§ §) Wi

Xip = fi(HXit:Bit) + it

« ¥,(L;¢;) models spatial correlation via generalised least
squares (GLS); location L and correlation decay &;.

What we assume. The actual data.

» Thew;, handle
» heteroscedasticity, via iteratively reweighted least squares (IRLS);

» missing values, with 0-1 weights like the PNAL score [1] (if MCAR)
or inverse-probability weights like HC-alPW [2] (if MAR or MNAR).

Model averaging: bagging with data-driven threshold [4].



CAusAL INFERENCE: WHAT CoNcLUSIONS CAN WE DrRAW?

« What is the relative impact of the direct risk factors?
ANX (0.574), NO, (0.339), OBE (0.077), PM, s, RANGETEMP, SO, (0.01).

« What proportion of pollution effects is mediated?
PM, 5, NO, and SO, change by 0.54x, 0.93x and 0.56x.

« What proportion of weather effects is mediated?
TEMF/RANGETEMPF, WIND/RANGEWIND, RAIN change by 0.29x, 0.38x, 0.02x

» What would be the impact of tightening environmental regulations?
PM, 512 — 9ug/m? for 1 year: -18% DER. PM, s 12 — 8ug/m?>: -21% DER.

» How long must a cold spell last before dermatitis increases?
DER +5% after 4 weeks.



DATA ANALYSIS

1. Data fusion and preprocessing.

2. Causal discovery assuming 11D data.

3. Statistical validation of the residuals.

4. Causal discovery with a spatial correlation structure.

5. Check the residuals, Bayes factors.

6. Causal discovery with spatial correlation + heterogeneity.
7. Check the residuals, Bayes factors, imposed sparsity level.

8. Predictive accuracy assessment.
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