
Bayesian and Causal Networks for
Clinical and Epidemiological Data

Concepts, Implementation
and Interpretation

Marco Scutari
scutari@bnlearn.com

Dalle Molle Institute for
Artificial Intelligence

October 22, 2025

mailto:scutari@bnlearn.com


Bayesian Networks

A Bayesian network [17, BN] is defined by:

• a directed acyclic graph (DAG) 𝒢 where each node
maps to a random variable 𝑋𝑖 ∈ X;

• a probability distribution P(X; Θ), factorising into
smaller local distributions following the arcs in 𝒢.

The DAG 𝒢 expresses the conditional independencies
among the 𝑋𝑖 through graphical separation, leading to:

P(X) =
𝑁

∏
𝑖=1

P (𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) ,

Π𝑋𝑖
= {parents of 𝑋𝑖}.
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Endometrial cancer, AIME 2023 [21].



Key Properties on Bayesian Networks
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Markov Blankets:
Feature Selection

Equivalence Classes:
Identifiability

Path Analysis:
Mediation
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From Bayesian Networks to Structural Causal Models

A structural causal model [1, SCM] is defined by:

• some endogenous (deterministic) variables X;

• some exogenous (stochastic) variables U;

• a DAG 𝒢 with nodes mapping to 𝑋𝑖, 𝑈𝑖 ∈ X ∪ U;

• one structural equation 𝑓𝑖(⋅) for each 𝑋𝑖.

Then the 𝑋𝑖are defined by the structural equations:

𝑋𝑖 ≔ 𝑓𝑖(Π𝑋𝑖
, 𝑈𝑖), Π𝑋𝑖

⊂ X.

Also structural equations models (SEMs) or causal BNs.
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They Look Similar, But They Have Completely Different Semantics

Bayesian Networks Structural Causal Models

Probabilistic independence relationships
are symmetric: if 𝑋𝑖 ⟂⟂ 𝑋𝑗, then 𝑋𝑗 ⟂⟂ 𝑋𝑖.

Causes and effects are not symmetric:
treating symptoms does not cure the un-
derlying disease.

X𝑖 as generalised linear models [9, 17]:
𝑔(𝑋𝑖) = 𝜂(Π𝑋𝑖

) + 𝜀𝑖 main effects only.
𝑋𝑖 as additive noise models [15, ANMs]:
𝑓𝑖(Π𝑋𝑖

, 𝑈𝑖) ≈ 𝑓𝑖(Π𝑋𝑖
) + 𝑈𝑖, main effects

only, fitted with regularised regressions.

Heavily rely on sufficiency (assume no
latent confounders).

Heavily rely on causal sufficiency (assume
no latent confounders).



The Ladder of Causation

These network models can be used at various levels of
sophistication, the step in the Ladder of Causation [14].

• BNs support levels 1–2 (Association and Intervention).

• SCMs support also support level 3 (Counterfactuals).

• SCMs can express latent confounding by linking
exogenous variables with multiple endogenous
variables. BNs cannot do that well, ad-hoc hacks are
needed [8].
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Just observing

Actively acting

Manipulate variables to set them to a single value (“hard”) or a distribution (“soft”).



Counterfactual
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Imagine a world that did not actually occur, but could have: what would have been different?



Bayesian Network Inference

Bayesian network inference automates quantitative assessments of probabilistic and causal
inference statements in BNs and SCMs. You ask queries on some event given some evidence
you have observed, and you get the answer.

Exact Inference Approximate Inference

Based on the junction tree algorithm. Based on MC or MCMC sampling.

Heavier computational cost. More scalable.

Akin to symbolic computations.
They provide exact answers.

Like posterior inference, answers have
simulation noise.



Inference for Refinement and Validation

Causal
Network

Data Marchine Learning
Algorithm

Electronic Health
Records

Clinical Trials

Academic
Literature

Clinicians

Qualitative 
information

Quantitative 
information

Iterative Model
Refinement and 

Validation

Hypothesis generation:
active learning

Human in the loop:
expert oversight

Statistical
validation



Structural Causal Models vs Experimental Design

SCMs Trial Design Nuance

DAGs as prior
specification.

Trial design as prior. DAGencodes prior causal knowledge;
informs trial design.

Intervention. Treatment assignment. Bayesian belief updates post-trial.

Backdoor adjustment. Randomisation. Information on known confounders.

Colliders. Stratification. Collider bias, sub-populations.

Causal Effects. Treatment Effects. Bayesian effect estimates.

Transportability. External validity. Generalising to different populations.



Modelling Missingness

• All missing data patterns identified by Rubin [12]
have a graphical representation in augmented
SCMs called missingness graphs [13].

• Each partially-observed 𝑋𝑖 is split into three
nodes: 𝑀𝑋𝑖

(complete, but latent), 𝑆𝑋𝑖

(incomplete, but observed) and 𝑅𝑋𝑖
(binary

missingness indicators). 𝑅𝑋𝑖
→ 𝑆𝑋𝑖

← 𝑀𝑋𝑖
.

• The parents of 𝑅𝑖 determine the pattern: MCAR
(no parents), MAR (only fully-observed 𝑋𝑗s),
MNAR (partially-observed or latent variables).

• Expectation-Maximisation is most common [16].
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Modelling Sampling Bias

• Sampling bias has a graphical representation in
augmented SCMs called selection diagrams [10].

• Treated like a latent confounder: each source of
bias is represented as an exogenous variable
liked to several endogenous variables.

• G-Transportability of study findings from a
source population to a different target
population, especially when the study is an RCT
and the target population is observational data.
Example: Breast cancer + CVD [4, 3].
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Modelling Time
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Vector auto-regressive time series, Kalman filters, hidden Markov models can all be cast as
dynamic SCMs [16]. Continuous-time SCMs are also possible [5].



Causal Discovery: Algorithms

Class Algorithms Approach

Constraint-Based
PC [7]
RFCI [8]

Conditional independence tests to prune
the search space into an equivalence class.

Score-Based
LiNGAM [19]
GES [6]

Navigating the DAG space to find the op-
timal SCM, leveraging the asymmetries in
residuals and/or regularisation.

Differentiable
NOTEARS [22]
DAGMA [2]

Minimising residual variance via gradient
descent, with constraints for SCMacyclicity
and sparsity.



Causal Discovery: Identifiability

Many assumptions ensure that causal
directions are correctly identified:

• Data frommultiple environments [10].

• Data with different interventions [11]

• Non-Gaussianity [19].

• Heteroscedasticity [20].

• Spatial correlations, non-IID data [18].

Randomisation also works as usual.
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That's all!

Happy to discuss in more detail.
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Primary Immunodeficiencies

• Goal: unravelling the interplay between clinical diagnosis codes linked to combined
immunodeficiencies (CID) and common variable immunodeficiencies (CVID).

• Main variables: clinical history with ICD codes from 4 different cohorts, each with its own
inclusion/exclusion criteria. ICD codes are transformed into phenotypes.

• Possible confounders: hopefully none, givenwe condition on all clinical history andwe use
US nation-wide data. Matched cases/controls using propensity scores from demographics.

• Size: ≈ 800/800/2.3𝑘/20𝑘 observations and≈ 550/550/400/300 variables in cohorts 1–4.

• Missing values: none!

Following up on a previous effort based on a custom deep-learning architecture [1].



Preprocessing: Data and ICD Codes
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Cohort 1 (Raw Data)
797 CID cases with pneumonia
797 controls with pneumonia

Cohort 2 (Raw Data)
797 CID cases with pneumonia
797 random controls, with or 

without pneumonia

Cohort 3 (Raw Data)
2,312 CID cases with (N=797) 

or without pneumonia
2,312 random controls, with or 

without pneumonia

Cohort 4 (Raw Data)
19,924 CID/CVID cases with (N=2,350)

or without pneumonia
19,924 random controls, 

with or without pneumonia

Data Preparation

Feature (ICD code) Selection
• Optum data Table combinations
• Patient demographics and
     medical claims indentification

Data Engineering
• ICD-9 to ICD-10 code extraction
     and initial mapping
• Hierarchical ICD code mapping

Futher Pre-Processing
• Cleaning confounders
• Missingness assessment
• One-hot encoding/Embeddings

Propensity Score Matching
• Matched controls across all 
     cohorts



Data Analysis

A. Cohorts 1-4 (N=47,660
CID/CVID cases and controls):

Clinical history ICD data

B. ICD to Clinical
Phenotype (CP) conversion

C. Dimensionality reduction 
(Sparse CP variables; collinear CP 

variables via Pearson X2)

F. Causal Discovery:
Parameter Learning by 

Maximum Likelihood Estimation

E. Consensus DAG
across each cohort

D. Causal Discovery:
Structure Learning (tabu search, 

BIC) and Model Ensemble
(bootstrapping, model aggregation)

G. Model performance
and generalizability

evaluations

H. Causal Inference:
Interventions and Odds

Ratio analysis

I. Evaluation by 
domain experts (clinical

immunologists)

Causal Modelling



The Role of Clinical Immunologists

• Telling phenotypes apart.

• With finite sample sizes and somany variables, some end up being numerically equivalent
(pair-wise association p-value ≈ 0).

• They explain CID/CVID equally well.
• Which ones make the most (clinical) sense to keep?

• Validating the causal networks:

• Reviewing the consensus causal networks from each cohort.
• Confirming that the networks really are dense.
• Assessing the Markov blankets of CID/CVID, which identify direct precursors of CID/CVID
diagnoses as parents.

We consulted them independently, effectively handling their observations as an ensemble
expert model.
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Dermatitis, Mental Conditions, Pollution and Climate Change

• Goal: understanding the effect of pollution and changing weather patterns onmental
conditions and dermatitis, and the cascading effect of mental conditions on dermatitis.

• Main variables: 3 pollutants (NO2, SO2, PM2.5), 3 mental conditions (anxiety, depression,
sleep disorders), obesity, dermatitis, weather patterns (temperatures, wind speed,
precipitations; both mean and spread).

• Possible confounders: education level, unemployment, income, household size and
population density.

• Size: ≈53k observations over ≈500 US counties and 134 weeks.

• Missing values: between 0% (the conditions) and 55% (pollutants).

Following up on a previous infodemiology study [3].



Data Sources: Google Trends, NOAA, EPA, US Census

Google  COVID-19  Open Data: 400  health 
conditions, 4 countries (county-level in 
the US), weekly search frequencies for 

2020-2023 normalised by NLP.

Monitoring stations 
in 1470 counties with
hourly measurements
of NOx, SOx, O3, PMx.

Weather stations 
in 1652 counties with
and satellite images.

Socio-economic data 
at the population level
to avoid confounding.



The Dimensions of the Data

Temporal Structure
(dynamic BNs)

Spatial Structure State-Space
Structure



GIRLS Networks: GLS + IRLS

Learned a dynamic network encoding a first-order VAR process:

𝑋𝑖𝑡 = 𝑓𝑖(Π𝑋𝑖𝑡
𝜷𝑖𝑡) + 𝜀𝑖𝑡, COV(𝜀𝑖𝑡) = wT

𝑖𝑡𝚺𝑖(L; 𝜉𝑖)w𝑖𝑡.

• 𝚺𝑖(L; 𝜉𝑖) models spatial correlation via generalised least
squares (GLS); location L and correlation decay 𝜉𝑖.

• The w𝑖𝑡 handle

• heteroscedasticity, via iteratively reweighted least squares (IRLS);
• missing values, with 0-1 weights like the PNAL score [1] (if MCAR)
or inverse-probability weights like HC-aIPW [2] (if MAR or MNAR).

Model averaging: bagging with data-driven threshold [4].



Causal Inference: What Conclusions Can We Draw?

• What is the relative impact of the direct risk factors?
ANX (0.574), NO2 (0.339), OBE (0.077), PM2.5, RANGETEMP, SO2 (0.01).

• What proportion of pollution effects is mediated?
PM2.5, NO2 and SO2 change by 0.54x, 0.93x and 0.56x.

• What proportion of weather effects is mediated?
TEMP/RANGETEMP, WIND/RANGEWIND, RAIN change by 0.29x, 0.38x, 0.02x

• What would be the impact of tightening environmental regulations?
PM2.5 12 → 9𝜇𝑔/𝑚3 for 1 year: -18% DER. PM2.5 12 → 8𝜇𝑔/𝑚3: -21% DER.

• How longmust a cold spell last before dermatitis increases?
DER +5% after 4 weeks.



Data Analysis

1. Data fusion and preprocessing.

2. Causal discovery assuming IID data.

3. Statistical validation of the residuals.

4. Causal discovery with a spatial correlation structure.

5. Check the residuals, Bayes factors.

6. Causal discovery with spatial correlation + heterogeneity.

7. Check the residuals, Bayes factors, imposed sparsity level.

8. Predictive accuracy assessment.
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