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Causal Discovery Meets Data

Causal discovery means learning a network 𝒢 and parameters Θ:

P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

We used to rely on domain experts [8, 9]; now we increasingly apply
learning algorithms to data [22].

time space

siz
e

What we assume.

The actual data.

We broadly know how do causal inference [12] once we have (𝒢, Θ).
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The Context: Infodemiology

• Combinations of comorbidities are often impossible to study in a
classical environmental epidemiology study.

• However, we have massive amounts of Internet-generated data
user-contributed health-related content.

• Infodemiology (short for “information epidemiology”) draws on this
data to replace epidemiological data and improve public health.

We need to assume:

• a non-negligible association between the frequency of online
mentions of specific diseases and their incidence;

• a broad coverage of the population.
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The Problem: Dermatitis, Pollution and Climate Change

Amotivating example: understanding the effect of pollution and
changing weather patterns onmental and dermatological conditions.

• Main variables: 3 pollutants (NO2, SO2, PM2.5), 3 mental conditions
(anxiety, depression, sleep disorders), obesity, dermatitis, weather
patterns (temperatures, wind speed, precipitations; both mean and
spread).

• Possible confounders: education level, unemployment, income,
household size and population density.

• Size: ≈53k observations over ≈500 US counties and 134 weeks.

• Missing values: between 0% (the conditions) and 55% (pollutants).

Following up from a previous infodemiology study [14].
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Data Sources: Google Trends, NOAA, EPA, US Census

Google  COVID-19  Open Data: 400  health 
conditions, 4 countries (county-level in 
the US), weekly search frequencies for 

2020-2023 normalised by NLP.

Monitoring stations 
in 1470 counties with
hourly measurements
of NOx, SOx, O3, PMx.

Weather stations 
in 1652 counties with
and satellite images.

Socio-economic data
at the population level
to avoid confounding.
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Nuisance Parameters, Parameters of Interest

A causal network has two components: the graph 𝒢 and the parameters
Θ. Causal inference defines queries using 𝒢:

• Conditional independence, via d-separation.

• Intervention, via mutilation.

• Counterfactual, via the twin network.

Our ability to answer scientific questions using the causal network rests
on having the right nodes in the network. Without them, we cannot even
formulate our question.

• The dimensions we use in the queries (interest) should be
represented as nodes.

• The dimensions we do not (nuisance) should be represented as
parameters in the local distributions.
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Network Structures: Time vs Space vs State-Space

Temporal Structure (dynamic BNs)

Spatial Structure State-Space Structure
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GIRLS Networks: GLS + IRLS

I propose to learn a dynamic network that encodes a first-order vector
auto-regressive process (VAR):

𝑋𝑖𝑡 = 𝑓𝑖(Π𝑋𝑖𝑡
𝜷𝑖𝑡) + 𝜀𝑖𝑡; E(𝜀𝑖𝑡) = 0, COV(𝜀𝑖𝑡) = wT

𝑖𝑡𝚺𝑖(L; 𝜉𝑖)w𝑖𝑡.

where:

• 𝚺𝑖(L; 𝜉𝑖) models spatial correlation from location coordinates L via
generalised least squares (GLS); 𝜉𝑖 model correlation decay.

• The w𝑖𝑡 handle

• heteroscedasticity, via iteratively reweighted least squares (IRLS);
• missing values, either with 0-1 weights like the PNAL score [6] (if MCAR)
or with inverse-probability weights like HC-aIPW [11] (if MAR or MNAR).

Denoising: bagging andmodel averaging with data-driven threshold [16].
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Code: The R Implementation

# provide an initial estimate.
model = nlme::gls(as.formula(f), data = full, method = "ML",

cor = nlme::corExp(value = args$spatial[, node],
form = ~ LAT + LON | WEEK, nugget = TRUE, fixed = TRUE))

old.logl = as.numeric(nlme:::logLik.gls(model), REML = FALSE)

# iteratively reweighted least squares.
for (iter in 1:(args$irls.max.iter)) {

# compute the per-state variances...
weights = sapply(levels(full[, "STATE"]), function(s) var(resid(model)[full[, "STATE"] == s]) )
for (i in seq(nrow(full)))
full[i, "w"] = weights[names(weights) == full[i, "STATE"]]

# ... and re-estimate the model.
model = nlme::gls(as.formula(f), data = full, method = "ML",

cor = nlme::corExp(value = args$spatial[, node],
form = ~ LAT + LON | WEEK, nugget = TRUE, fixed = TRUE),

weights = nlme::varFixed(~ w))
new.logl = as.numeric(nlme:::logLik.gls(model, REML = FALSE))

# check convergence.
if (isTRUE(all.equal(old.logl, new.logl)))
break

else
old.logl = new.logl

}#FOR
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Theoretical Considerations

• The causal network is completely identifiable because:

• Arc directions across time points are fixed.
• Heteroscedastic residuals + Gaussian noise [10, 18, 19].
• Even if all w𝑖𝑡 = 1, the actual residuals 𝚺𝑖(L; 𝜉𝑖)−1/2𝜀𝑖𝑡 are
heteroscedastic unless 𝚺𝑖(L; 𝜉𝑖) ∝ I𝑛.

• The causal network can be statistically validated using:

• Autocorrelation tests at different lags in each location.
• Moran’s I [5] at each time point, and fit variograms to explore the
proportion of variance attributable to spatial structure [13].

• Bartlett’s heterogeneity test [3] on 𝚺−1/2
𝑖 𝜀𝑖𝑡.

• Causal inference over time and space via 𝜎-calculus [7].

• 𝚺𝑖(L; 𝜉𝑖) can accommodate irregularly spaced locations.
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Incomplete Data + Time (Looks Very Wrong)

ANX
DEP

DER

NO2

OBE

PM25

POPULATION

RAIN

RANGETEMP

RANGEWIND

SLD

SO2

TEMP

WIND
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Incomplete Data + Time

Residuals are largely free from autocorrelation! Check-Circle

lag 1 lag 2 lag 3 lag 4
ANX 0.008 0.000 0.000 0.008
DEP 0.000 0.000 0.000 0.000
DER 0.032 0.000 0.000 0.000
OBE 0.000 0.000 0.000 0.000
SLD 0.078 0.007 0.007 0.000

But they are full of spatial correlation! Times-Circle

proportion
ANX 0.468
DEP 0.397
DER 0.738
OBE 0.579
SLD 0.381
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Incomplete Data + Space + Time (Looks Less Wrong)
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Incomplete Data + Space + Time

The causal network fits the data much better! Check-Circle

log BF = (−39.77) − (−44.33) = 4.56 ⟹ BF = 95.92.

But the residuals are markedly heteroscedastic! Times-Circle

p-value
ANX 8 × 10-182

DEP 9 × 10-217

DER 0
OBE 8 × 10-100

SLD 1 × 10-147

Onemore time...
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Incomplete Data + Space + Time + Heteroscedasticity (Looks OK)
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Incomplete Data + Space + Time + Heteroscedasticity

The causal network fits the data much better! Check-Circle

log BF = (−36.55) − (−39.77) = 3.22 ⟹ BF = 25.

The weighted residuals are completely homoscedastic! Check-Circle

p-value
ANX 1
DEP 1
DER 1
OBE 1
SLD 1

Some arcs are obviously missing, reduce sparsity a bit...
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My Final Model (Looks the Best So Far)

ANX

DENSITY 

DEP

DER

INCOME

NO2

OBE

PM25 

POPULATION

POVERTY

RAIN

RANGETEMP

RANGEWIND

SLD

SO2

TEMP

WIND

1616



Causal Inference: What Conclusions Can We Draw?

• What is the relative impact of the direct risk factors?
ANX (0.574), NO2 (0.339), OBE (0.077), PM2.5, RANGETEMP, SO2 (0.01).

• What proportion of pollution effects is mediated?
PM2.5, NO2 and SO2 change by 0.54x, 0.93x and 0.56x.

• What proportion of weather effects is mediated?
TEMP/RANGETEMP, WIND/RANGEWIND, RAIN change by 0.29x, 0.38x, 0.02x

• What would be the impact of tightening environmental regulations?
PM2.5 12 → 9𝜇𝑔/𝑚3 for 1 year: -18% DER. 12 → 8𝜇𝑔/𝑚3: -21% DER.

• How longmust a cold spell last before dermatitis increases?
DER +5% after 4 weeks.
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Much Needed Extensions

• Using GLMs is straightforward because we can estimate themwith
IRLS, which we already use, and allows for discrete variables.

• Bringing change point detection from the literature on VARs [1, 2].

• Amore robust handling of missing values, proving that PNAL works
under MAR or leveraging my students’ work on causal discovery under
MNAR [4, 20, 21].

• Incorporating random effects to separate global and local effects (in
time/space/sub-populations) frommy previous work [15, 17].
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Conclusions

• Causal discovery makes simplifying assumptions that are too strong.

• Classical statistics gives us flexible and scalable tools to model
complex structures in the data.

• Pose the research question first: model the data dimensions you need
graphically and hide the rest in the local distributions.

• State-space data, mixed variable types, missing values, population
structure, non-stationarity: we can deal with them!
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That's all!

Happy to discuss in more detail.
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