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A GRAPH AND A PROBABILITY DISTRIBUTION

A Bayesian network (BN) [20] is defined by:

« anetwork structure, a directed acyclic graph G in which each node
corresponds to a random variable X;

» aglobal probability distribution X with parameters ©, which can be
factorised into smaller local probability distributions according to
the arcs presentin G.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

N
P(X) = HP(Xi |Ix;O©x,) where Iy = {parentsofX,inG}.

=1



BAYESIAN NETWORK STRUCTURE LEARNING

Learninga BN B = (G, ©) from a data set 2 involves two steps:

P(B|D)=PG,0|D) = PY|D) - PO|5D).
learning structure learning parameter learning

Structure learning consists in finding the DAG with the best

—— N — e’
graph prior marginal likelihood

P(G|D)x P(G) - P(D|G) =P /P(D | 5,0)P(© ] 9)dO
which is known as score-based learning [10]. The alternative, constraint-
based learning, uses tests following Pearl’s work on causality [24]:

X, 1p X; | SXi,Xj = X, 1¢ X; | SXi,Xj-

conditional independence graphical separation

Parameter learning consists in estimating the parameter sets © x| Il .



THE CLASSIC DEFINITION AND MODERN EXTENSIONS

What are we assuming when trying to learn a BN? Typically that:
« observations are independent and there are no missing values;

« allvariables are observed, that is, there are no latent variables
introducing confounding in the model;

« we measure probabilistic associations (or rather, independencies)
and we cannot necessarily interpret them as causal.

What happens if we relax these assumptions? Many extensions suddenly
become possible, see [19] for a recent review. In this talk we will discuss:

« Learning BNs from continuous-time dynamic data [5].

« Learning BNs from data in which data have structure, such as
state-space data and collations of related data sets [2, 21].

We will not discuss learning BNs from incomplete data, but we are
making progress on that front as well [4].
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CONTINUOUS-TIME BAYESIAN NETWORKS

Continuous-Time BNs (CTBNs) are a framework for modelling
finite-state, continuous-time processes. Their graphical representation
allows for natural, cyclic dependency graphs without having to specify a
temporal granularity [17].

A CTBN consists of two components:
o Adirected graph encoding conditional Xy

independencies.
A conditional intensity matrix (CIM) Qx, |u i

describing the evolution process of a
variable with the parameters

° qy,: asetofintensities parameterising the
exponential distributions over when the next
transition occurs.

¢ O, asetof probabilities parameterising the
distribution over where the state transitions.



CONSTRAINT-BASED STRUCTURE LEARNING?

Score-based learning was covered by Nodelman [17] in his original work
on CTBNs. For constraint-based structure learning, we need a new
definition of conditional independence [5]:

Let V-be a CTBN with a graph G over X. We say that X, iLXj | SXI,,X],
ifQx, |5 = Qx, s forallvalues z, s of X ; and SX“XJ_.

Note that conditional independence is not symmetric in CTBNs! To test it
we need to test two separate hypotheses:

« Time To Transition: independence of the waiting times (q x ), tested
with an F'test to compare their exponential distributions.

« State-to-State Transition: independence of the transitions (OXl_),
tested with a two-sample 2 test or a Kolmogorov-Smirnov test.

We test time-to-transition hypothesis first and then, if the null is rejected,
the state-to-state hypotheses. If both nulls are rejected, X; and X ; are
conditionally independent.



HYPOTHESIS TESTING

Time to Transition [3]: given the exponential waiting times g, @5y s

dy|s

H,:

3 = 1l with null £,
Qzly,s

TaTh

where T = Zz'GXi me’|y,s and Ty, = Za:/eXi me/|s.

State-to-State Transition [15]: given 6, 6

z|y,s’
(K . an:’\ g = L. Ma:z’|s)2
Hy:0,_ =0 with null  x? = -
0 VUzls = Uzlys w/EZX Mypjs + Myyrjy s

Z?:l Mzz/\s
Zf:l Macac/|y,s
We reject the (conditional) independence between the two nodes if at
least one null hypothesis is rejected.

where K = and L = %



A PC ALGORITHM FOR CONTINUOUS-TIME BAYESIAN NETWORKS

Given how different the definition of conditional independence is, we
need to adapt the PC algorithm [6] to match.

1. Form a complete directed graph G over X.
2. For each variable X;:
2.1 SetU = {X, € X: X; — X}, the current parent set.

2.2 Forincreasingvaluesb =0, ..., |U|:
2.2.1 Foreach X; € U,test X, IL X, | Sy x_forall possible subsets of size b
ARt}
of U\ X,.
2.2.2 Assoonas X, I X | SXi,Xj for some Sxi,xj, remove X, — X, from G
and X, from U.
3. Return G.

We call this the Continuous-Time PC (CTPC) algorithm [5]. It has better
structural accuracy than the score-based approach in [17], but both
approaches are slow: they are only practical for less than 20 variables.



PC VERSUS SCORE-BASED LEARNING
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SociAL NETWORKS AND GRAPHICAL MODELS

Network models broadly fall into two groups:

« Social networks in which nodes are associated with individuals and
arcs represents their similarity, measured on the variables.

» Graphical models in which nodes are associated with the variables
in the data and the arcs represent probabilistic associations
measured on independent observations.

Social Network
(the structure of the data)

©
©)

&—0
®

X, X X X,
525 414 145 525
410 070 249 626
711 796 3.15 854
038 845 762 471
703 646 245 407
109 398 1.09 250

Graphical Model
(the structure of the variables)

‘/®/\‘®

®©




BAYESIAN NETWORKS FOR STRUCTURED DATA

We often want to model both perspectives at the same time:

« In causal networks to measure the average treatment effect from
multi-centre clinical trials, individuals treated in the same hospital
and the treatment they receive are more homogeneous than those
in different hospitals.

 In gene networks and multivariate genomic association models,
similarity between the genotypes of individuals implies a similarity
in their phenotypical traits.

» Instate-space data, individuals close to each other in space are more
likely to exhibit similar behaviour; and longitudinal measurements
are more strongly associated within than between individuals.

Failure to properly account for the similarity between individuals
artificially inflates the strength of the apparent relationships between
the variables, resulting in dense biased networks.



MuLTI-CENTRE CLINICAL TRIALS: RELATED DATA SETS

Hospitals produce separate data sets which are then collated together for
the analysis. Inevitable differences in their implementations of the
clinical trial make those data sets related but not identical.

We want to learn the BN as a hierarchical model that separates the
shared average effect encoded by each arc from hospital-specific effects,
pooling information across hospitals.

Assumptions: the structure of the BN is CrosemaL >
the same for all hospitals, but the

parameters differ between hospitals.

The assignment of each individual to Comenr>
hospital is known.

The mathematical formulation: @

« avariational Bayesian score with a
hierarchical prior [2];

« using mixed-effects models [21].

TREATMENT
(RANDOMISED)




A VARIATIONAL BAYESIAN SCORE FOR DISCRETE VARIABLES

Dlr
@ Hierarchical
Model

Dir.
@ T Variational

Approximation
Si

i=1,...,N

Thus we get the Bayesian Hierarchical Dirichlet (BHD) score:

1T P
N |F| Hx,| sifi;) Xl (s, %H%k)

P(D| F,5) HH []

INEH +n )k i T(siRi)
where s, 5, ;). = the posterior mean of o, ;;, under the variational model.




VARIATIONAL APPROXIMATIONS AND MIXED-EFFECTS MODELS

The BHD score:
« has better structural accuracy when we are modelling related data
sets;
o it gets increasingly better as the number of related grows;

o it getsincreasingly better as the size of (at least some of) the
individual related data sets grows.

However, this approach is not flexible because we need a separate set of
mathematical derivations for each structured-data scenario and for each
type of random variable. In this respect, a better alternative is to use
mixed-effects models (LMEs) [7, 18] as the local distributions for the X:

« generalised linear mixed-effects models (GLMMs) can model all
types of variables in the exponential family (binomial, multinomial,
Poisson, Gaussian, etc.) but

« in practice they make us reintroduce some linearity assumptions.



WHAT DoOES THAT Look LIKE?

In a Gaussian BN, each node X has distribution

Adding a grouping node F’ like clinical trial centres would make it a
conditional Gaussian BN in which we fit a separate linear regression for
each data set j identified by F:

X; = pyj +1x By +ex, with ex,~N(0,031,). (2)
A mixed-effects model that takes (1) and adds random effects for all Iy,
X; = px, +x,Bx, + Zbx, +ex,, by, ~N(0,%),ex,~N(0,0% I,)
has the same form as (2),
X; = (pij +bo;) + Ux (Bx, +b;;) +ex,,

but pools information across data sets much like BHD does [21].



PooLING VERSUS NO PooLING: HOMOGENEOUS DATA
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If the data are just a single homogeneous data set, introducing mixed
effects does not degrade performance.




PooLING VERSUS NO POOLING: HETEROGENEOUS DATA
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If the data really are a collation of related data sets, introducing mixed
effects improves both structural (SHD) and parametric accuracy (KL). The
difference becomes more marked if the related data sets are unbalanced.



STRUCTURED DATA IN STATISTICAL GENETICS

Statistical genetics has long used the random effects in mixed-effects
models to encode population structure (that is, related individuals),
using pedigrees or genomic data [1]. In the context of BNs, the
foundational Genomic BLUP model becomes

Xi = Hx, + 1_‘[X,;:BX,; +g+ EXl-v g~ N<07K)?8XiNN(07 O%(i]:n>

where the kinship matrix K encodes the relatedness. If K o« GG, with
G the matrix of the genotypes, this model is equivalent to a ridge
regression, which is in turn equivalent to a random-effects model [9, 23]:

Hence we can add the random effects Gb x_ to a local regression as soon
as one of the genotypes is a parent of X, to implicitly incorporate kinship.

(Or we can give up modelling individual genotypes and do it like [13].)



STRUCTURED DATA OVER TIME AND SPACE

Dynamic BNs can model temporal data as vector auto-regressive
processes by duplicating nodes across time points [16], spatial networks
over a grid [12]. However, this is impractical when observations are
irregularly spaced and spread over time. A mixed-effects model can
incorporate spatial and temporal autocorrelation into local distributions
using random effects similarly to kinship in statistical genetics models.

A Naive Static BNs
(data are independent across
time and space)

Nodes Replicated in Time and Space Dynamic BN with Spatial Correlation
(too many nodes and arcs) (an interpretable causal network)
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CONCLUSIONS AND FUTURE DIRECTIONS

Bayesian networks are a fundamental tool in machine learning: they
subsume many models [19] and handle incomplete data [4],
continuous-time time series [5] and collections of related data sets [2].

What next?

» Making CTBNs into Markov decision processes [11, 22] to model as
streaming health data where we administer medical treatments in
real time.

« Incorporating all the computational tricks used in the statistical
genetics literature [8, 14, 26] to speed up learning.

« Areanalysis of a complex environmental data set such as [25] to
explore BNs with a spatio-temporal structure.
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