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THE PROBLEM: DERMATITIS, POLLUTION AND CLIMATE CHANGE

An epidemiological problem: understanding the effect of pollution and
changing weather patterns on mental and (especially) dermatological
conditions.

« Main variables: 3 pollutants (NO,, SO,, PM2.5), 3 mental conditions
(anxiety, depression, sleep disorders), obesity, dermatitis, weather
patterns (temperatures, wind speed, precipitations; both mean and
spread).

» Possible confounders: education level, unemployment, income,
household size and population density.

» Size: ~53k observations over ~500 US counties and 134 weeks.

» Missing values: between 0% (the conditions) and 55% (pollutants).



DATA SOURCES: GOOGLE TRENDS, NOAA, EPA, US CENsSuUS

Google

Google COVID-19 Open Data: 400 health
conditions, 4 countries (county-level in
the US), weekly search frequencies for

2020-2023 normalised by NLP.

Monitoring stations
in 1470 counties with
hourly measurements
of NOx, SOx, 03, PMx.

ATMOSp,
de\opk‘o /“/6‘,9/0
Weather stations
in 1652 counties with
and satellite images.

Socio-economic data
at the population level
to avoid confounding.




CausAL DiscoVERY MEETS THESE DATA

Causal discovery means learning a network G and parameters ©:

P(G,0 | D) = PG| D) . PO]39,D).
learning structure learning parameter learning

We used to rely on domain experts [5, 6]; now we increasingly apply
learning algorithms to data [14].

The actual data.

What we assume.

We broadly know how do causal inference [9] once we have (G, O).



GIRLS NETWORKS: GLS + IRLS

| propose to learn a dynamic network that encodes a first-order vector
auto-regressive process (VAR):

Xit = fi(HXit:Bit) + &5 E(e;) =0,C0V(ey) = withi(L§§z')Wit'
where:
o X,(L; &) models spatial correlation from location coordinates L via
generalised least squares (GLS); &; model correlation decay.

» The w;, handle

» heteroscedasticity, via iteratively reweighted least squares (IRLS);
o missing values, either with 0-1 weights like the PNAL score [3] (if MCAR)
or with inverse-probability weights like HC-alPW [8] (if MAR or MNAR).

Denoising: bagging and model averaging with data-driven threshold [11].



THEORETICAL CONSIDERATIONS

The causal network is completely identifiable because:

» Arc directions across time points are fixed.

» Heteroscedastic residuals + Gaussian noise 7, 12, 13].

« Evenifallw;, = 1, the actual residuals 3;(L; &;)~"/*¢,, are
heteroscedastic unless ¥, (L; §;) < I,,.

The causal network can be statistically validated using:

o Autocorrelation tests at different lags in each location.
o Moran’s | [2] at each time point, and fit variograms to explore the
proportion of variance attributable to spatial structure [10].

o Bartlett’s heterogeneity test [1] on 2;1/25“.

Causal inference over time and space via o-calculus [4].

¥, (L; ;) can accommodate irregularly spaced locations.



My BASELINE MODEL (LooKS VERY WRONG)
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Does not pass any of the tests, predictive accuracy R? ~ 0.70 — 0.75.



My FINAL MODEL (LOOKS THE BEST SO FAR)
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BF > 3400, passes all the tests, predictive accuracy is still R? ~ 0.70 — 0.75.




CAUSAL INFERENCE: WHAT CoNcLUSIONS CAN WE DrRAW?

What is the relative impact of the direct risk factors?
ANX (0.574), NO, (0.339), OBE (0.077), PM2.5, RANGETEMP, SO, (0.01).

« What proportion of pollution effects is mediated?
PM2.5, NO, and SO, change by 0.54x, 0.93x and 0.56x.

« What proportion of weather effects is mediated?
TEMP/RANGETEMP, WIND/RANGEWIND, RAIN change by 0.29x, 0.38x, 0.02x

« What would be the impact of tightening environmental regulations?
PM2.512 — 9ug/m? for 1 year: -18% DER. 12 — 8ug/m?>: -21% DER.

« How long must a cold spell last before dermatitis increases?
DER +5% after 4 weeks.



CONCLUSIONS

« Causal discovery makes simplifying assumptions that are too strong
for infodemiological (and epidemiological) data.

« Classical statistics gives us flexible and scalable tools to model
complex structures in the data.

o State-space data, mixed variable types, missing values, population
structure, non-stationarity: we can deal with them!

« GIRLS produces causal networks we can trust (because we validate
their assumptions) and that generalise well (in time and space).



THAT'S ALL!

HAPPY TO DISCUSS IN MORE DETAIL.
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