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The Problem: Dermatitis, Pollution and Climate Change

An epidemiological problem: understanding the effect of pollution and
changing weather patterns onmental and (especially) dermatological
conditions.

• Main variables: 3 pollutants (NO2, SO2, PM2.5), 3 mental conditions
(anxiety, depression, sleep disorders), obesity, dermatitis, weather
patterns (temperatures, wind speed, precipitations; both mean and
spread).

• Possible confounders: education level, unemployment, income,
household size and population density.

• Size: ≈53k observations over ≈500 US counties and 134 weeks.

• Missing values: between 0% (the conditions) and 55% (pollutants).



Data Sources: Google Trends, NOAA, EPA, US Census

Google  COVID-19  Open Data: 400  health 
conditions, 4 countries (county-level in 
the US), weekly search frequencies for 

2020-2023 normalised by NLP.

Monitoring stations 
in 1470 counties with
hourly measurements
of NOx, SOx, O3, PMx.

Weather stations 
in 1652 counties with
and satellite images.

Socio-economic data
at the population level
to avoid confounding.



Causal Discovery Meets These Data

Causal discovery means learning a network 𝒢 and parameters Θ:

P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

We used to rely on domain experts [5, 6]; now we increasingly apply
learning algorithms to data [14].
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What we assume.

The actual data.

We broadly know how do causal inference [9] once we have (𝒢, Θ).



GIRLS Networks: GLS + IRLS

I propose to learn a dynamic network that encodes a first-order vector
auto-regressive process (VAR):

𝑋𝑖𝑡 = 𝑓𝑖(Π𝑋𝑖𝑡
𝜷𝑖𝑡) + 𝜀𝑖𝑡; E(𝜀𝑖𝑡) = 0, COV(𝜀𝑖𝑡) = wT

𝑖𝑡𝚺𝑖(L; 𝜉𝑖)w𝑖𝑡.

where:

• 𝚺𝑖(L; 𝜉𝑖) models spatial correlation from location coordinates L via
generalised least squares (GLS); 𝜉𝑖 model correlation decay.

• The w𝑖𝑡 handle

• heteroscedasticity, via iteratively reweighted least squares (IRLS);
• missing values, either with 0-1 weights like the PNAL score [3] (if MCAR)
or with inverse-probability weights like HC-aIPW [8] (if MAR or MNAR).

Denoising: bagging andmodel averaging with data-driven threshold [11].



Theoretical Considerations

• The causal network is completely identifiable because:

• Arc directions across time points are fixed.
• Heteroscedastic residuals + Gaussian noise [7, 12, 13].
• Even if all w𝑖𝑡 = 1, the actual residuals 𝚺𝑖(L; 𝜉𝑖)−1/2𝜀𝑖𝑡 are
heteroscedastic unless 𝚺𝑖(L; 𝜉𝑖) ∝ I𝑛.

• The causal network can be statistically validated using:

• Autocorrelation tests at different lags in each location.
• Moran’s I [2] at each time point, and fit variograms to explore the
proportion of variance attributable to spatial structure [10].

• Bartlett’s heterogeneity test [1] on 𝚺−1/2
𝑖 𝜀𝑖𝑡.

• Causal inference over time and space via 𝜎-calculus [4].

• 𝚺𝑖(L; 𝜉𝑖) can accommodate irregularly spaced locations.



My Baseline Model (Looks Very Wrong)
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Does not pass any of the tests, predictive accuracy 𝑅2 ≈ 0.70 − 0.75.



My Final Model (Looks the Best So Far)
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BF ⩾ 3400, passes all the tests, predictive accuracy is still 𝑅2 ≈ 0.70 − 0.75.



Causal Inference: What Conclusions Can We Draw?

• What is the relative impact of the direct risk factors?
ANX (0.574), NO2 (0.339), OBE (0.077), PM2.5, RANGETEMP, SO2 (0.01).

• What proportion of pollution effects is mediated?
PM2.5, NO2 and SO2 change by 0.54x, 0.93x and 0.56x.

• What proportion of weather effects is mediated?
TEMP/RANGETEMP, WIND/RANGEWIND, RAIN change by 0.29x, 0.38x, 0.02x

• What would be the impact of tightening environmental regulations?
PM2.5 12 → 9𝜇𝑔/𝑚3 for 1 year: -18% DER. 12 → 8𝜇𝑔/𝑚3: -21% DER.

• How longmust a cold spell last before dermatitis increases?
DER +5% after 4 weeks.



Conclusions

• Causal discovery makes simplifying assumptions that are too strong
for infodemiological (and epidemiological) data.

• Classical statistics gives us flexible and scalable tools to model
complex structures in the data.

• State-space data, mixed variable types, missing values, population
structure, non-stationarity: we can deal with them!

• GIRLS produces causal networks we can trust (because we validate
their assumptions) and that generalise well (in time and space).



That's all!

Happy to discuss in more detail.
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