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BACKGROUND

The Difference Between Fibromyalgia and Chronic Fatigue

Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM): T T
© Often co-occur; more prevalent in females; clinical differentiation difficult. ..v.....‘.l.u. m"dwl. Imm m...,.]m
® Shared symptoms: fatigue, pain, and poor sleep. chronc fatigue © b Hoalth
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Polysomnography (PSG) = clinical sleep study:
® Overnight measurement of biosignals (EEG, EOG,...).

® Each 30-second scored into five states: Wake (W), Rapid-Eye-Movement (REM),
and non-REM (light: N1-2, deep: N3).
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Prior work showed altered sleep-stage transitions (lag=1) I
via simple statistical tests [1]. i || !
Need for more advanced modelling of sleep-stage dynamics: oo
® Optimallagin{0,1,2,3,..}. §
o Effects of CFS and FM > physiological interpretation. f Al

¢ Compensatory alterations (~p;; implies vpj, for some k # j). P




DATA

Primary cohort [1]:
« PSG from N =52 women: 26 Healthy (H), 14 CFS, 12 CFS+FM.

» Minimised confounding: age-matched (38 + 8); excluded sleep/psychiatric disorders; no
alcohol, caffeine, exertion; menstrual phase standardized; etc.

» 44,581 of sleep-stages > 7,254 bouts » dynamics modelling.

Out-of-domain validation cohorts, females aged 20-60:
» Sleep Heart Health Study, N = 1227, broad population.
« Berner Sleep-Wake Registry, N =834, clinical population.



MODELLING

Bayesian Network:

« Discretised variables (nodes): @ @ @ T @ Tea

HS: Health Status (Healthy, CFS,

CFS+FM). @ =
T:: Time since sleep onset. (
C,: Cumulative restorative v v

(REM+N3) sleep. @

ag=1 Lag=2

-

S;: stage-identifier (W, N1-3, REM). Lag=0
D,: duration.

» Expert-guided dependencies (edges); mandatory ones are solid.

» BN-lag (0-4) and variable inclusion tested experimentally using 5-fold CV monitoring

next-stage prediction (Acc., F1-score) and HS-identification (AUROC).



RESULTS: PREDICTIVE PERFORMANCE ¢ EFFECT QUANTIFICATION

Final Bayesian Network:
« Optimality of lag = 2; confirmed findings of [2] to clinical cohort [1].
o Included health status (HS), stages, and their durations.
Subject-wise performance:

o Next-stage F1-score:

* 69.2(2.7)% in primary cohort using CV.

« 70.94(9.1)% in BSWR; 59.83 (11.6)% in SHHS.

o Robust generalization of our “small-data” BN, as SOTA reports 62.2% in-domain test
accuracy using big data [2].

 HS-identification: AUROC = 75.36 (8.3)%.
Understanding the impact of CFS/FM via simulated interventions:

» Fix HS to desired level (H, CFS, CFS+FM)] > MCMC sampling - 95% Credible Intervals.



RESULTS: SLEEP-STAGE BouT DURATION

Shared:

CFS: 2REM - increased cognitive

» MW > decreased sleep efficiency. restoration needs.

o ~N3 >increased physical restoration

needs.

»
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RESULTS: SLEEP-STAGE DYNAMICS, LAG =1

Shared: Disrupted REM sleep {| REM, |REM 2 N1}:
= |ess sleep cycles + reduced cognitive restoration
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CFS: More REM and N1 awakenings
= compensating disrupted REM 2 N1 dynamics
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CES+FM: Increased need for physical recovery from
FM-related pain

= Deeper state (N2-3) dominance: {{N2-3, |[N1}

= |ncreased homeostatic pressure {1(W, N1, REM)
—N2}




RESULTS: SLEEP-STAGE DYNAMICS, LAG = 2
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CONCLUSIONS

« Extended findings by Kishi et al. (2011).

« Sleep-stage dynamics as a second-order process even in clinical population, extending
Yetton et al. (2018).

» Robust next-stage predictive power despite training on small data: sleep-dynamics can
serve as a diagnostic marker (AUROC = 75.4%).

« Results support clinical differentiation of CFS and CFS+FM.

« Opens path to personalised treatment interventions (e.g.,
CFS/FM sleep-management therapies).



THAT'S ALL!

HAPPY TO DISCUSS IN MORE DETAIL.
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