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Graphical Models

Graphical models are defined by two components:

• a network structure, either an undirected graph (Markov
networks [2, 19], gene association networks [14], correlation
networks [17], etc.) or a directed graph (Bayesian networks
[7, 8]). Each node corresponds to a random variable;

• a global probability distribution, which can be factorised into
a small set of local probability distributions according to the
topology of the graph.

This combination allows a compact representation of the joint
distribution of large numbers of random variables and simplifies
inference on the parameters of the model.
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Structure and Parameter Learning

Likewise, learning a graphical model is a two-stage process:

1. structure learning: learning the structure of the network
underlying the graphical model, i.e. estimating the
dependencies present in the data and adding the associated
edges to the model;

2. parameter learning: using the decomposition into local
probabilities given by the network structure learned in the
previous step to estimate the parameters of the local
distributions.

Several approaches have been proposed for both steps [1, 7],
covering all aspects of graphical model estimation.
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Network Structure Validation

Model validation techniques have not been developed at a similar
pace, particularly in the case of network structures:

• the few available measures of structural difference are
completely descriptive in nature (i.e. Hamming distance [6] or
SHD [18]), and are difficult to interpret;

• unless the true global probability distribution is known it is
difficult to assess the quality of graphical models without
ad-hoc solutions; this limits the study of the properties of
network structures to few reference data sets [3, 9].

A more systematic approach to model validation, and in particular
to the problem of identifying statistically significant edges in a
network, is required for graphical models learned from real data.
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Friedman’s Confidence

Friedman et al. [4] proposed an approach to model validation
based on bootstrap resampling and model averaging:

1. For b = 1, 2, . . . ,m:

1.1 sample a new data set X∗b from the original data X using
either parametric or nonparametric bootstrap;

1.2 learn the structure of the graphical model Gb = (V, Eb) from
X∗b .

2. Estimate the confidence that each possible edge ei is present
in the true network structure G0 = (V, E0) as

p̂i = P̂(ei) =
1

m

m∑
b=1

1l{ei∈Eb},

where 1l{ei∈Eb} is equal to 1 if ei ∈ Eb and 0 otherwise.
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Evaluating Confidence Values

• The confidence values p̂ = {p̂i} do not sum to one and are
dependent on one another in a nontrivial way; the value of the
confidence threshold (i.e. the minimum confidence for an edge to be
accepted as an edge of G0) is an unknown function of both the data
and the structure learning algorithm.

• The ideal/asymptotic configuration p̃ of confidence values would be

p̃i =

{
1 if ei ∈ E0

0 otherwise
,

i.e. all the networks Gb have exactly the same structure.

• Therefore, identifying the configuration p̃ “closest” to p̂ provides a
statistically-motivated way of identifying significant edges and the
confidence threshold.
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The Confidence Threshold

Consider the order statistics p̃(·) and p̂(·) and the cumulative
distribution functions (CDFs) of their elements:

Fp̂(·)(x) =
1

k

k∑
i=1

1l{p̂(i)<x}

and

Fp̃(·)(x; t) =


0 if x ∈ (−∞, 0)

t if x ∈ [0, 1)

1 if x ∈ [1,+∞)

.

t corresponds to the fraction of elements of p̃(·) equal to zero and
is a measure of the fraction of non-significant edges, and provides
a threshold for separating the elements of p̃(·):

e(i) ∈ E0 ⇐⇒ p̂(i) > F−1p̃(·)
(t).
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The CDFs Fp̂(·)(x) and Fp̃(·)(x; t)
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One possible estimate of t is the value t̂ that minimises some
distance between Fp̂(·)(x) and Fp̃(·)(x; t); an intuitive choice is
using the L1 norm of their difference (i.e. the shaded area in the
picture on the right).
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An L1 Estimator for the Confidence Threshold

Since Fp̂(·) is piecewise constant and Fp̃(·) is constant in [0, 1], the L1

norm of their difference simplifies to

L1

(
t; p̂(·)

)
=

∫ ∣∣Fp̂(·)(x)− Fp̃(·)(x; t)
∣∣ dx

=
∑

xi∈{{0}∪p̂(·)∪{1}}

∣∣Fp̂(·)(xi)− t
∣∣ (xi+1 − xi).

This form has two important properties:

• can be computed in linear time from p̂(·);

• its minimisation is straightforward using linear programming [11].

Furthermore, the L1 norm does not place as much weight on large
deviations as other norms (L2, L∞), making it robust against a wide
variety of configurations of p̂(·).
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A Simple Example
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Consider a graph with 4 nodes and confidence values

p̂(·) = {0.0460, 0.2242, 0.3921, 0.7689, 0.8935, 0.9439}

Then t̂ = mint L1

(
t; p̂(·)

)
= 0.4999816 and F−1p̃(·)

(0.4999816) = 0.3921;

only three edges are considered significant.
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Analysis of Functional Relationships

We measured the effectiveness of the proposed method on two
gene networks from Nagarajan et al. [10] and Sachs et al. [13]
using the bnlearn package [16, 15] for R [12].

• Functional relationships have been investigated using Bayesian
networks, as in the original papers;

• 500 bootstrapped network structures Gb have been learned
from each data set, with the same learning algorithms, scores
and parameters as in the original papers;

• Following Imoto et al. [5], we will consider the edges of the
Bayesian networks disregarding their direction. Edges
identified as significant will be oriented according to the
direction observed with the highest frequency in the
bootstrapped networks Gb.
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Differentiation Potential of Aged Myogenic Progenitors

The clonal gene expression data in Nagarajan et al. [10] was
generated (for 12 genes) from RNA isolated from 34 clones of
myogenic progenitors obtained from 24-months old mice. The
objective was to study the interplay between crucial myogenic,
adipogenic, and Wnt-related genes orchestrating aged myogenic
progenitor differentiation.

In the same study, the authors estimated the significance threshold
by randomly permuting the expression of each gene and learning
Bayesian network structures from the resulting data sets. Model
averaging of these networks provided the noise floor distribution for
the edges; confidence values falling outside its range were deemed
significant. This approach, however, is slower than just computing
an L1 norm and may result in a large number of false positives on
large data sets.
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Differentiation Potential of Aged Myogenic Progenitors
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threshold=0.504

All edges identified as significant in the earlier study are also
identified by the proposed approach; directionality of the edges is
also revealed, unlike the original network in Nagarajan et al. [10].
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Protein Signalling in Flow Cytometry Data

Sachs et al. [13] used Bayesian networks as a tool for identifying
causal influences in cellular signalling networks from simultaneous
measurement of 11 phosphorylated proteins and phospholipids
across single cells.

Significant edges were selected using model averaging but with an
ad-hoc significance threshold of 0.85, first on 854 non-perturbed
observations and then on several sets of perturbed data. This
combination cannot be analysed with our approach, because each
subset of the data follows a different probability distribution and
therefore there is no single “true” network G0; therefore we limit
ourselves to the unperturbed data.
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Protein Signalling in Flow Cytometry Data
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Again all edges identified as significant in the observational data
are also identified by the proposed approach; directionality of the
edges is also revealed, unlike the original network, and agrees with
with the network learned with the help of perturbed data in Sachs
et al. [13].
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Conclusions

Conclusions

• Model validation is often performed using an ad-hoc
thresholds for the identification of significant edges. Such
ad-hoc approaches can have a pronounced effect on the
resulting networks and biological conclusions.

• The minimisation of the L1 norm of the difference between
the CDF of the observed confidence levels and the CDF their
ideal/asymptotic configuration provides straightforward and
statistically-motivated approach for identifying significant
edges.

• The proposed approach is defined in a very general setting
and can be applied to many classes of graphical models
learned from any kind of data.

• The effectiveness of the proposed approach is demonstrated
on two different gene networks different studies.
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