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Bayesian Networks as Gene Networks

In genetics and systems biology, Bayesian networks (BNs) are used to describe and iden-
tify interdependencies among genes and gene products, with the eventual aim to better
understand the molecular mechanisms that link them. If we assign each gene to one node
in the BN, edges represent the interplay between different genes, and can describe either
direct (causal) interactions or indirect influences that are mediated by unobserved genes.
BNs can be estimated (learned) with a variety of algorithms, which can all be traced to
three approaches:

1. constraint-based, which are based on conditional independence tests;

2. score-based, which are based on goodness-of-fit scores;

3. and hybrid, which combine the previous two approaches.

Score-based algorithms are just the application of general purpose optimisation techniques
to BNs, and most are inherently sequential (e.g. each step depends on the previous one).
On the other hand, constraint-based algorithms can be parallelised effectively, to the point
that it is feasible to learn gene networks from high-dimensional data.

Parallel Constraint-Based Learning

Constraint-based algorithms display a coarse-grained parallelism, because they can be split
in parts whose status needs to be updated only two times. Recent algorithms, which learn
the Markov blankets of the nodes as an intermediate step, require one additional update.
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Therefore, they can all be parallelised as shown above:

1. the Markov blanket of each node can be learned independently from the others;

2. each neighbourhood is a subset of the corresponding Markov blanket and, therefore,
can be learned independently from the others. The consistency of the Markov blankets
must be checked beforehand. They may not be symmetric for very noisy data, so
we need to examine all pairs of nodes and remove them from each other’s Markov
blanket if they do not appear in both of them;

3. given the neighbourhoods, the v-structures centred on each node (i.e. the one with
the converging arcs) can be identified in parallel; using Markov blankets is not re-
quired, but reduces the search space considerably. Again, the consistency of the
neighbourhoods must be checked beforehand.

Note that the resulting BN is identical to the one obtained from the non-parallel imple-
mentation, and the tests they perform are exactly the same.

Optimised Constraint-Based Learning

Although optimisations for constraint-based algorithms have not been explored in detail
in literature, some papers (e.g. [6]) suggest using backtracking to reduce the number of
conditional independence tests and the size of the conditioning sets. Since Markov blankets
and neighbourhoods are symmetric, we can consider those we already learned to initialise
the one we are currently learning. For example, for the Markov blanket of a node Xi:

1. we can tentatively include all the nodes whose Markov blankets include Xi, as Xi ∈
BXj
⇔ Xj ∈ BXi

;

2. we can tentatively exclude all the nodes whose Markov blankets do not include Xi.

Nodes that are tentatively included can later be removed by a test (i.e. they may be
false positives), and nodes that are excluded can later be included (i.e. they may be false
negatives).

Benchmark Data Sets and Algorithms

Using bnlearn [5], we assessed the parallel and optimised implementations of:

• the Grow-Shrink (GS) and the Interleaved IAMB (Inter-IAMB) learning algorithms
[4], which learn complete BNs starting from their Markov blankets;

• the Max-Min Parents-Children (MMPC) [4] and the Semi-Interleaved HITON-PC
(SI-HITON-PC) [6] algorithms, which learn the undirected graph underlying the BN;

on samples of 20K observations generated from the MUNIN ([1], 1041 nodes, 81K param-
eters) and the LINK ([3], 724 nodes, 14K parameters) reference BNs. The only algorithm
that scales well to genetic data is SI-HITON-PC, which we applied to:

• the lung adenocarcinoma gene expression data (86 obs., 7131 nodes) from [2];

• the WTCCC heterogeneous mice SNP data (1940 obs., 12545 nodes) from [7].

Benchmarks on Reference Bayesian Networks
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Benchmarks on Real World Genetic Data
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Conclusions

• Parallel implementations of constraint-based BN learning algorithms scale linearly in the
number of cores/processors, with little overhead.

• Considering that any modern computer (even desktops) has at least two cores, optimised
implementations of constraint-based algorithms are not competitive with the correspond-
ing parallel implementations, even on a single machine.
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