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Machine Learning Has No Understanding
Machine learning creates black boxes that use probabilistic associa-
tions for prediction. It does not understand the causality that drives
reality, and often struggles with uncertainty and bias.

We Need Fairness!

What We Want from Fair Models
• Interpretability: What do the parameters mean in the domain the
data come from?

• Explainability: Why does the model give specific predictions?
• Best practices: What are the best ways to select and validate
models?

• Confidence: Are the effects wemeasure statistically significant?
What is the error margin of predictions?

Optimisation vs Statistics
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The Fair Ridge Regression Model (FRRM)
Consider a regression model with X predictors, S sensitive at-
tributes, response y and a given level of fairness 𝑟 ∈ [0, 1] (0 = com-
plete fairness, 1 = no fairness constraints).

1. Compute Û (the fair predictors) as X = SB̂OLS + Û.

2. Estimate 𝜷FRRM = (ÛTÛ)
−1

ÛTy.
3. Estimate �̂�OLS = (STS)−1 STy.

Then:

4. If 𝑅2
S(�̂�OLS, 𝜷OLS) ⩽ 𝑟, set 𝜶FRRM = �̂�OLS.

5. Otherwise, find the value of 𝜆(𝑟) that satisfies

𝑅2
S(𝜶, 𝜷) =

VAR(S𝜶)
VAR(S𝜶 + Û𝜷FRRM)

= 𝑟

and estimate the associated 𝜶FRRM in the process.

FRRM solves argmin𝜶,𝜷 ‖y − S𝜶 − Û𝜷‖2
2 + 𝜆(𝑟)‖𝜶‖2

2.
Check Single solution, computationally inexpensive.
Check Pluggable fairness constraints.
Check Works for all generalised linear models.
Check Interpretable and explainable.
Check A statistical model we know very well.

Confidence and Uncertainty
Bayesian statistics allows us to quantify uncertainty in our estimates
in an easy and interpretable way. To design the Bayesian version of
FRRM, we define the likelihood

y ∣ 𝜶, 𝜷, Û, S ∼ MVN(Û𝜷 + S𝜶,
1
𝜏𝐼)

and the priors on 𝜶, 𝜷, the penalty parameter 𝜆 and the precision 𝜏:

𝜷 ∣ 𝜏 ∼ MVN(0,
1
𝜏𝐼)

𝜶 ∣ 𝜏, 𝜆 ∼ MVN(0,
1

𝜏𝜆𝐼)

𝜆 ∼ Gamma(
1
𝑟5 − 1, 1)

𝜏 ∼ Gamma (1, 1)

Using this scheme, we can design a Gibbs sampler or Hamiltonian
Monte Carlo algorithm to sample from the posterior of the param-
eters. This allows us to easily estimate the posterior distribution of
the parameters and investigate their credible intervals.
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