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Overview

1. Definition and Notations
[MN 2; AA 4]

2. Logistic Regression
[MN 4; AA 6; VR 7]

3. Log-Linear Regression
[MN 6; VR 7]

4. Advanced Models
[MN 9; AA 13]
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Generalised Linear Models
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Generalised Linear Models

Recap: In the Previous Episode

Assuming a continuous response and normally-distributed errors constrains the
kinds of response variables we can model without transforming them. A
general class of models that tackles this problem is generalised linear models
(GLMs), which assume the response has a distribution for the exponential
family and regresses its expected value through a link function:

g(E(yi)) = ηi where ηi = β0 + xi1β1 + . . .+ xipβp. (1)

Some possible choices for the response are:

• the Gaussian distribution to obtain classic linear models;

• the Gamma distribution for non-negative continuous responses, yi ∈ R+;

• the binomial distribution for binary responses, yi ∈ {0, 1};

• the Poisson distribution for count data, yi ∈ N.

We will concentrate on the last two which are by far the most popular
non-Gaussian GLMs.
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Generalised Linear Models

Generalised Linear Models: Binomial Response

For a binary response, the natural assumption is the binomial distribution. So

E(yi) = πi and g(πi) = ηi = β0 + xi1β1 + . . .+ xipβp (2)

and as a link function we need a g : [0, 1]→ R. Popular candidates that are
implemented in R are:

• the logistic (logit) function or log-odds

g(π) = log
π

1− π
; (3)

• the probit function

g(π) = Φ−1(π), where Φ() is the Normal CDF; (4)

• and the complementary log-log function

g(π) = log(− log(1− π)). (5)

Hence the name logistic regression.
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Generalised Linear Models

Link Functions: Logit, Probit and Complementary Log-Log
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Generalised Linear Models

Why These Link Functions?

All the link functions have similar shapes. They converge asymptotically to
zero for large negative values and to one for large positive values.

The logit and probit functions are symmetric around π = 0.5, and are almost
perfectly linearly related in [0.1, 0.9]. Therefore, the logit function is preferable
because it is in closed form and it is easy to invert:

logit−1(η) =
eη

1 + eη
. (6)

The complementary log-log function is not symmetric around 0.5, which means
that the roles of success and failure are not interchangeable. It is the inverse of
the (log-)Weibull CDF; that distribution is used to model extreme values data.
It is also useful in some models because it is related to hazard functions in
survival data analysis.
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Generalised Linear Models

Generalised Linear Models: Poisson Response

For count data, the natural assumption is the Poisson distribution. So

E(yi) = λi and g(λi) = ηi = β0 + xi1β1 + . . .+ xipβp

and as a link function we need a g : R+ → R. Popular candidates that are
implemented in R are:

• the natural logarithm
g(λ) = log(λ); (7)

• the identity function
g(λ) = λ; (8)

• the square root
g(λ) =

√
λ. (9)

Hence the name log-linear regression.
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Generalised Linear Models

Link Functions: Logarithm, Identity and Square Root
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Generalised Linear Models

Why These Link Functions?

The logarithm is a simple and mathematically elegant transform from R+ to R,
and it has an equally simple and elegant inverse in the exponential.

The identity is a suitable link for a “large enough” because the Poisson
distribution is asymptotically normal due to the central limit theorem:

Pois(λ)→ N(λ, λ) as λ→∞. (10)

In that case the responses will be very far from zero and we can structure the
GLM as an ordinary linear model, knowing that the residuals may be strongly
heteroschedastic (the variance is λ same as the mean).

The square root is an approximate variance-stabilising transformation (i.e. to
make the variability of the values not related to their expectation, as they
would not be in a normal distribution). The original is called the Anscombe
transform: for Y ∼ Pois(λ) and

g : y → 2

√
y +

3

8
we have g(Y )

.∼ N

(
2

√
λ+

3

8
− 1

4
√
λ
, 1

)
. (11)
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Generalised Linear Models

Canonical Link Functions

Distributions in the exponential family have the form

f(y; θ) = exp

{
yθ − b(θ)
a(ψ)

+ c(y, ψ)

}
(12)

where θ is called the canonical parameter. ψ is a nuisance parameter
which may or may not be known. A link function is called canonical
when it links the linear predictor η to the canonical parameter.
For instance, we can re-write the binomial distribution as

f(y;π) ∝ πy(1− π)n−y = exp

{
y log

π

1− π
+ n log(1− π)

}
(13)

so the logit function is the canonical link. For the Poisson,

f(y;λ) ∝ λye−λ = exp {y log λ− λ} , (14)

so the natural logarithm function is the canonical link.
Marco Scutari University of Oxford



Generalised Linear Models

Why Do We Prefer Canonical Link Functions?

When using a canonical link function:

• XTy is the sufficient statistic for θ.

• The residuals will sum up to zero, though they are not likely to be
symmetric unless the response variable is normal.

• Deriving maximum likelihood estimates is much simpler than with
non-canonical link functions (more below): Newton-Raphson and
Fisher scoring coincide.

• If observations come with weights, they are conserved between the
raw data yi and the estimated data ŷi.

• Interpretation of the regression is typically intuitive (for some
values of “intuitive”): think odds (for the Binomial) and
multiplicative effects (for the Poisson).
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Generalised Linear Models

Mean and Variance in Exponential Families

The log-likelihood function from (12) is

l(θ; y) =
yθ − b(θ)
a(ψ)

+ c(y, ψ); (15)

and the first and second order derivatives are

l′(θ; y) =
y − b′(θ)
a(ψ)

and l′′(θ; y) = −b
′′(θ)

a(ψ)
. (16)

Since we know that E[l′(θ;Y )] = 0, if we substitute we have that

E

[
Y − b′(θ)
a(ψ)

]
= 0 ⇒ E(Y )− b′(θ)

a(ψ)
= 0 ⇒ E(Y ) = b′(θ). (17)

We also know that E[l′′(θ;Y )] + E[l′(θ;Y )]2 = 0, so

E

[
−b
′′(θ)

a(ψ)

]
+ E

[
y − b′(θ)
a(ψ)

]2
= 0⇒ −b

′′(θ)

a(ψ)
+

VAR(Y )

a(ψ)2
= 0

⇒ VAR(Y ) = b′′(θ)a(ψ). (18)
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Generalised Linear Models

The Dispersion Parameter

The variance of the data in the model is expressed as

VAR(Y ) = b′′(θ)a(ψ) (19)

and a(ψ) is commonly of the form a(ψi) = ψ/wi, where

• ψ is called the dispersion parameter and

• w is set of weights that may or may not be different for different
observations, depending on the distribution.

NOTE: for the distributions which do not have a dispersion parameter
separate from the expectation (the normal does, the binomial and the
Poisson do not), fitting a generalised linear model may result in
overdispersion or underdispersion when does not display the right
amount of variability for its mean value.
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Generalised Linear Models

A Breakdown of the Gaussian Distribution

The exponential family form is

f(π; y) = exp

{
−(y2 − 2yµ+ µ2)

2σ2
− 1

2
log(2πσ2)

}
(20)

so the various components are

a(ψ) = σ2, θ = µ, b(θ) =
1

2
θ2, (21)

c(y;ψ) = − 1

2ψ
y2 − 1

2
log(2πσ2). (22)

Then the canonical link function and the variance are

E (Y ) = µ = θ ⇒ the identity link, and (23)

VAR (Y ) = σ2 ⇒ the dispersion (scale) parameter. (24)
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Generalised Linear Models

A Breakdown of the Binomial Distribution

The exponential family form is

f(π; y, n) = exp

{
y log

π

1− π
+ n log(1− π) + log

(
n

y

)}
(25)

so the various components are

a(ψ) = 1, θ = log
π

1− π
, b(θ) = n log(1 + eθ), c(y;ψ) = log

(
n

y

)
. (26)

Then the canonical link function and the variance are

E(Y ) = nπ = n
eθ

1 + eθ
⇒ θ = log

π

1− π
and (27)

VAR(Y ) =
eθ

(1 + eθ)2
⇒ 1

a(ψ)
VAR(Y ) = nπ(1− π). (28)
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Generalised Linear Models

A Breakdown of the Poisson Distribution

The exponential family form is

f(λ; y) = exp {y log λ− λ− log y!} (29)

so the various components are

a(ψ) = 1, θ = log λ, b(θ) = eθ, c(y;ψ) = − log y! (30)

Then the canonical link function and the variance are

E(Y ) = λ = eθ ⇒ θ = log λ (31)

and

VAR(Y ) = eθ = λ. (32)
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Generalised Linear Models

Exponential Family and Maximum Likelihood Estimation

Maximum likelihood estimates for β̂ can be derived through iteratively
(re-)weighted least squares (IWLS). Say E(Yi) = µi. Then we change
variable a few times and string the resulting derivatives to compute
l′(βj), j = 1, . . . , p

dl(βj)

dβj
=
dl(θ)

dθ

dθ(µ)

dµ

dµ(η)

dη

dη(βj)

dβj
=

n∑
i=1

W

a(ψ)
(yi − µi)

dη

dµ
xij . (33)

Then we compute Fisher’s information

E

(
− d2l

dβrdβs

)
= A that has Ars =

n∑
i=1

Wixirxis (34)

and use the two order of derivatives to iteratively update the estimates
of βj with Newton-Raphson or Fisher scoring. The weights W are
updated in each iteration along with the estimates.
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Generalised Linear Models

Goodness of Fit: The Deviance

The main measure of goodness of fit is the deviance, which is twice the
difference between the log-likelihoods of two nested models. It is defined
as

D = 2
(
l(β̂)− l(β̃)

)
= 2

n∑
i=1

yi(θ̂ − θ̃)− b(θ̂) + b(θ̃)

a(ψi)
(35)

which in practice is a log-likelihood ratio test statistic and is
asymptotically distributed as a χ2 distribution whose degrees of freedom
are given by the difference in number of the free parameters. If we
assume that a(ψi) = ψ/wi then we can define the (un)scaled deviance

D∗ = ψD =

n∑
i=1

2wi

(
yi(θ̂ − θ̃)− b(θ̂) + b(θ̃)

)
. (36)

for distribution with a meaningful dispersion parameter.
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Generalised Linear Models

The Null and Residual Deviance

The two most basic forms of deviance used in model selection are:

• The null deviance

DN = 2 [l(MS)− l(M0)] ∼ χ2
n−1, (37)

comparing the saturated model MS and the empty model M0. It
is useful as a term of comparison and to give the scale for other
deviances.

• The residual deviance

DR = 2 [l(MS)− l(ML)] ∼ χ2
n−p−1, (38)

comparing the the saturated model MS and the model ML

estimated from the data. For Gaussian GLMs, the residual deviance
is (surprise!) the scaled residual sum of squares

DR =
n∑
i=1

(yi − µi)2

σ2
∼ χ2

n−p−1. (39)
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Generalised Linear Models

Analysis of Deviance

Like the analysis of variance, analysis of deviance can be used to decompose
the deviance of a full fitted model into independent components associated
with the explanatory variables. Starting from the null deviance we can split out
the residual deviance

DN = 2 [l(MS)− l(M0)] = 2

l(MS)− l(ML)︸ ︷︷ ︸
residual deviance DR

+ l(ML)− l(M0)︸ ︷︷ ︸
model deviance

 , (40)

and then we can split the component related to each explanatory variable:

DN = DR + 2

l(ML)− l(Mβp−1)︸ ︷︷ ︸
component for βp

+ l(Mβp−1)− l(Mβp−2)︸ ︷︷ ︸
component for βp−1

+

+ . . .+ l(Mβ1
)− l(M0)︸ ︷︷ ︸

component for β1

 . (41)
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Generalised Linear Models

Other Model Selection Criteria

Aside from using deviance instead of residual variance, model selection
is mostly the same as for Gaussian GLMs.

• We can build tables like ANOVA tables with deviance contributions
and χ2 tests.

• We can use AIC and BIC to compare models that are not
necessarily nested; but we can also use p-values from residual
deviance to the same effect.

• For predictive models, we can use cross-validation to compute
predictive correlations (for continuous responses), true positives &
negatives (for binary responses) or classification errors (for
categorical responses).

Model assumptions and goodness-of-fit should be checked in the process
of selecting a model, to make sure the selected model makes sense.
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Generalised Linear Models

Residuals

The definition of the residuals is more ambiguous than in the case of classic
linear models because of the link function and because their standard error is
not necessarily a relevant quantity. Two common takes are:

• Pearson’s residuals,

rP =
yi − µi√

V(µi)
where V(µi) = VAR(Yi)/a(ψ) = b′′(θ), (42)

which are classic residuals standardised by the variance adjusted for the
dispersion parameter. Note that if Yi is Poisson then

n∑
i=1

r2P = Pearson’s X2. (43)

• the deviance residuals,

rD = sign(yi − µi)
√
di where

n∑
i=1

di = D (44)

and D is the deviance of the model.
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Generalised Linear Models

Properties of the Residuals

• The residuals of a generalised linear model are not normally
distributed. If the response is continuous but non-normal, Pearson’s
residuals residuals are skewed in general. If the response is discrete,
residuals usually appear in stripe patterns, with one stripe for each
level of the response.

• For both definitions, the sum of the squared residuals is approximately
distributed as a χ2.

• Pearson’s residuals have approximately zero mean and constant
variance a(ψ) but they can be quite skewed.

• Deviance residuals are more likely to look like they are normally
distributed. If all parameters for the model are known, D ∼ χ2

n,
di ∼ χ2

1 i.i.d. and therefore
√
di ∼ N(0, 1). Plus, they can be

interpreted as the contribution of the ith observation to D.

• Model selection often tries to minimise deviance residuals, (almost)
never Pearson’s residuals.
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Generalised Linear Models

Residuals vs Fitted Values: an Example

The stripe pattern in the residuals appears even if the model is perfectly
specified, as the Poisson GLM below.

> set.seed(123)

> n = 10^3

> k = 5

> beta = rnorm(k, sd = 0.2)

> x = matrix(rnorm(n * k), ncol = k)

> y = rpois(n, lambda = exp(-0.5 + x %*% beta + 0.1 * rnorm(n)))

> m = glm(y ~ x, family = poisson)

To highlight which residual corresponds to which value of y, we can produce a
custom plot with one colour for each observed value of the response.

> library(lattice)

> col = trellis.par.get()$superpose.symbol$col[1:max(y)]

> xyplot(y - fitted(m) ~ fitted(m), group = y,

+ xlab = "fitted values", ylab = "residuals",

+ key = list(points = list(col = col, pch = "O"), corner = c(0.95, 0.97),

+ text = list(paste("y = ", as.character(1:max(y))))),

+ col = col, scales = list(tck = c(1, 0)))
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Generalised Linear Models

Residuals vs Fitted Values: an Example
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Generalised Linear Models

Estimating the Dispersion Parameter

For the binomial and Poisson GLMs, a(ψ) is a constant and therefore
there is nothing to estimate. For other distributions, the dispersion
parameter is a nuisance parameter that estimated as:

a(ψ) =
DR

n− p− 1
=

1

n− p− 1

n∑
i=1

di, (45)

which equivalent to the mean of the squared deviance residuals.

For Gaussian GLMs, we obtain the unbiased estimate of the residual’s
variance:

a(ψ) =

n∑
i=1

(yi − µi)2

n− p− 1
=

n∑
i=1

ε̂2i
n− p− 1

= σ̂2ε . (46)
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Generalised Linear Models

Overdispersion

The downside of not having a dispersion to estimate is that the variance
VAR(Y ) is a function of the same parameter as E(Y ); but model
estimation only cares about the latter. Therefore, the data may have
more than the allotted amount of variability (overdispersion) or less
than that (underdispersion).

The estimates of the regression coefficients are not influenced by either,
because the µi do not depend on a(ψ). But all the goodness-of-fit
statistics are biased unless the asymptotic χ2 distributions are rescaled
with an inflation factor, e.g. DR ∼ ψ∗χ2

n−p−1.

There are several model that extend GLMs to handle such data sets
under more relaxed assumptions: the beta-binomial model, the
gamma-poisson model, quasi-likelihood models, random-effects models,
etc.
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Generalised Linear Models

How Do We Discover Overdispersion?

The common way of assessing overdispersion is to compare the residual
deviance against its degrees of freedom, because the two quantities
should be similar (asymptotically, for large nπi and λi the binomial and
the Poisson distributions are almost Gaussian).

In practice, using the sum of the squared Pearson’s residuals to check
whether

1

n− p− 1

n∑
i=1

(r2P )i ' 1 (47)

as opposed to using the deviance residuals r2D has much less bias.
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Generalised Linear Models

The Anolis Lizards Data Set

This small data set is from Fienberg’s (1980) book on categorical data
analysis.

> lizards = read.table("lizards.txt", header = TRUE)

> str(lizards)

’data.frame’: 409 obs. of 3 variables:

$ Species : Factor w/ 2 levels "Sagrei","Distichus": 1 1 1 1 1 1 1 ...

$ Diameter: Factor w/ 2 levels "narrow","wide": 1 1 1 1 1 1 1 ...

$ Height : Factor w/ 2 levels "high","low": 2 2 2 2 2 2 2 ...

For a sample of 409 lizards, the following variables were recorded:

• the species, which can be either Sagrei or Distichus;

• the height of the branch they were perched on, discretised in two
categories narrow (6 4in) and wide (> 4in);

• the diameter of that same branch, discretised in two categories
high (> 4.75ft) and low (6 4.75ft).
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Generalised Linear Models

Fitting GLMs: the glm() Function

The glm() function is the analogous of lm() for GLMs, and has a
similar syntax. The main difference lies in the family argument, which
specifies the distribution we are assuming for the response and
(optionally) the link function. The default is the canonical link.

> m = glm(Species ~ Diameter + Height, data = lizards,

+ family = binomial(link = logit))

> m

Call: glm(formula = Species ~ Diameter + Height,

family = binomial(link = logit), data = lizards)

Coefficients:

(Intercept) Diameterwide Heightlow

-0.1437 0.8029 0.7511

Degrees of Freedom: 408 Total (i.e. Null); 406 Residual

Null Deviance: 550.8

Residual Deviance: 526.6 AIC: 532.6
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Generalised Linear Models

Models From glm() and summary()

> summary(m)

Call:

glm(formula = Species ~ Diameter + Height, family = binomial(link = logit),

data = lizards)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8048 -1.1170 0.6609 0.9326 1.2390

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1437 0.1503 -0.956 0.338972

Diameterwide 0.8029 0.2198 3.652 0.000260 ***

Heightlow 0.7511 0.2242 3.350 0.000807 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 550.85 on 408 degrees of freedom

Residual deviance: 526.57 on 406 degrees of freedom

AIC: 532.57

Number of Fisher Scoring iterations: 4Marco Scutari University of Oxford



Generalised Linear Models

summary(m): Regression Coefficients

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1437 0.1503 -0.956 0.338972

Diameterwide 0.8029 0.2198 3.652 0.000260 ***

Heightlow 0.7511 0.2242 3.350 0.000807 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The p-values for the Wald tests are computed using z-scores (as
opposed to the t-scores used for lm() models), which are defined as

zβi = t2βi =
(β̂i − β0)2

VAR(β̂i)
∼ χ2

1 (asymptotic) (48)

and VAR(β̂i) comes from the IWLS. For instance, for Diameter:

> pchisq((0.8029 / 0.2198)^2, 1, lower.tail = FALSE)

[1] 0.0002593293
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Generalised Linear Models

summary(m): Goodness of Fit

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 550.85 on 408 degrees of freedom

Residual deviance: 526.57 on 406 degrees of freedom

AIC: 532.57

The null and residual deviance are reported with the respective degrees
of freedom. If l(MS) = 0, as in this case, we have

DR = −2l(ML) which means AIC = DR + 2(p+ 1). (49)

R2 is not reported, because even though a few pseudo-R2 coefficients
have been defined they are difficult to interpret. One example is the
generalised R2 from Cox & Snell:

R2
GLM = 1−

[
L(M0)

L(ML)

]2/n
∈ [0, R2

max] (50)

which needs to be rescaled for logistic regression to be defined in [0, 1].
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Generalised Linear Models

Key Quantities Pre-Computed by glm()

• The fitted values µ̂i, obtained by transforming the linear predictors by the
inverse of the link function, i.e. g−1(ηi).

> fitted(m)

1 2 3 4 5 6

0.64733 0.64733 0.64733 0.64733 0.64733 0.64733 [...]

• The residuals ε̂i from the final iteration of the IWLS algorithm.

> resid(m)

1 2 3 4 5 6

-1.44377 -1.44377 -1.44377 -1.44377 -1.44377 -1.44377 [...]

Note that, unlike fitted values, they are on the scale of the link function so
they are different from y - fitted(m).

• The intercept and regression coefficients β̂.

> coef(m)

(Intercept) Diameterwide Heightlow

-0.1437035 0.8028584 0.7510606
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Generalised Linear Models

The predict() Function

predict() produces predicted or fitted values (if no newdata is passed
to the function) on two scales:

• on the scale of the linear predictors, i.e. the η̂i;
> predict(m, type = "link")

1 2 3 4 5 6

0.60735 0.60735 0.60735 0.60735 0.60735 0.60735 [...]

• on the scale of the response, i.e. µ̂i;
> predict(m, type = "response")

1 2 3 4 5 6

0.64733 0.64733 0.64733 0.64733 0.64733 0.64733 [...]

For example, for a logistic regression the former returns

η̂i = log
π̂i

1− π̂i
(51)

while the latter returns π̂i.
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Generalised Linear Models

Deviance Tables from anova()

anova() returns a table with the decomposition of the deviance,
starting from the empty model M0 and adding each explanatory in turn
in the order in which they were specified in the call to glm().

> anova(m)

Analysis of Deviance Table

Model: binomial, link: logit

Response: Species

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 408 550.85

Diameter 1 12.606 407 538.24

Height 1 11.674 406 526.57

The first entry is the null deviance (i.e. the residual deviance of M0)
and the last is the residual deviance (i.e. of ML) from summary().
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Generalised Linear Models

Graphical Diagnostics: plot(m)
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Generalised Linear Models

Model Checking

Checking whether the model is problematic is much more difficult for a GLM
than for a classic linear model. Diagnostic plots can look very different
depending on the nature of the response and of the explanatory variables,
particularly the residuals’ quantile-quantile plot.

An additional plot that may be useful to check for potential outliers is the
half-normal quantile-quantile plot of the absolute residuals:

> library(lattice)

> n = nrow(lizards)

> xyplot(sort(abs(resid(m))) ~ qnorm((1:n + n)/(2 * n)),

+ xlab = "half-normal quantiles", ylab = "abs(residuals)",

+ panel = function(...) {

+ panel.xyplot(...)

+ panel.abline(0, 1, col = "grey", lty = 2)

+ })

which may be easier to read than the default two-tailed plot when the residuals
are skewed.
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Generalised Linear Models

Graphical Diagnostics: Half-Normal Plot
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Generalised Linear Models

Leverage and Cook’s Distance

The residual variance of a linear model is replaced the dispersion a(ψ) and the
hat matrix becomes

H = W
1
2X(XTWX)−1XTW

1
2 (52)

and in turn it can be shown that

µ̂− µ√
VAR(µ)

' HV
1
2 (Y − µ) (53)

which means that H measures the influence of Y on µ on the scale of
Studentised residuals. So we can have the standardised residuals

r∗P =
(yi − µi)√

ψ̂V (µ̂i)(1− hii)
, r∗D =

rD

ψ̂(1− hii)
(54)

and Cook’s distance (which is still confusingly denoted as di or Di) to identify
outliers.
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Logistic Regression

Marco Scutari University of Oxford



Logistic Regression

Model Formulation

Logistic regression is a binomial GLM with the canonical logit link

log

(
πi

1− πi

)
= ηi = β0 + xi1β1 + . . .+ xipβp (55)

which means that for each observation

πi =
exp(β0 + xi1β1 + . . .+ xipβp)

1 + exp(β0 + xi1β1 + . . .+ xipβp)
. (56)

The relationship is linear between the logarithm of the odds of success
and the regressors. In other words, each regression coefficient represents
the logarithm of the estimated change in the odds for a unit change of
the corresponding explanatory variable.
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Logistic Regression

Prostatic Cancer: an Epidemiological Study

This data set from Collett’s “Binary Data Modelling” book describes an
epidemiological study on the diagnosis of nodal involvement in prostatic
cancer based on non-invasive methods. The study includes 53 patients
and 5 explanatory variables:
• Age: the age of the patient, in years.
• Acid: the level of serum acid phosphate.
• X-ray: the result of x-ray examination, positive or negative.
• Size: tumour size, small or large.
• Grade: tumour grade, less or more serious.

> cancer = read.table("prostatic.cancer.txt", header = TRUE)

> head(cancer)

Age Acid Xray Size Grade Nodal

1 66 0.48 negative small less no

2 68 0.56 negative small less no

3 66 0.50 negative small less no

4 56 0.52 negative small less no

5 58 0.50 negative small less no

6 60 0.49 negative small less no
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Logistic Regression

The Importance of Factor Coding

The coding of the factors involved in the logistic regression is crucial in
interpreting both model validation results and regression coefficients. In the
case of the response variable, swapping cases and controls changes the signs of
all the regression coefficients (and the intercept) because

log

(
π

1− π

)
= − log

(
1− π
π

)
= log

(
ψ

1− ψ

)
with ψ = 1− π. (57)

The first level should correspond to the controls and the second to the cases.

As for the explanatory variables, contrasts are build using the first level as a
reference so the regression coefficients may or may not be easily interpreted
depending on which is chosen. We can take care of that with the relevel()

function.

> cancer$Nodal = relevel(cancer$Nodal, ref = "no")

> cancer$Grade = relevel(cancer$Grade, ref = "less")

> cancer$Size = relevel(cancer$Size, ref = "small")

> cancer$Xray = relevel(cancer$Xray, ref = "negative")
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Logistic Regression

Graphical Methods for Exploratory Analysis

Graphical exploratory analysis techniques developed for classic linear
models are unsuited to logistic regression because they implicitly assume
the response is continuous. Three alternatives are:

• Plotting each continuous explanatory variable against the response
using boxplots.

• Plotting each categorical explanatory variable against the response
using stacked barplots.

• Plotting the first principal component for the explanatory variables
against the second in a principal components plot. Cases and
controls are in different colours and should ideally cluster.
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Logistic Regression

Boxplots for Continuous Explanatory Variables

nodal involvement

ag
e

45

50

55

60

65

no yes

Marco Scutari University of Oxford



Logistic Regression

Boxplots for Continuous Explanatory Variables (R Code)

> library(lattice)

> bwplot(Age ~ Nodal, data = cancer,

+ xlab = "nodal involvement", ylab = "age",

+ panel = function(x, y, ...) {

+

+ panel.bwplot(x, y, ..., pch = "|")

+ panel.points(1, mean(y[x == "no"]), pch = 19, col = "red", ...)

+ panel.points(2, mean(y[x == "yes"]), pch = 19, col = "red", ...)

+

+ })
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Logistic Regression

Stacked Barplots for Categorical Explanatory Variables
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Logistic Regression

Stacked Barplots (R Code)

> tab = table(cancer[, c("Xray", "Nodal")])

>

> library(lattice)

> col = trellis.par.get()$superpose.symbol$col[c(3, 7)]

>

> barchart(prop.table(tab), horizontal = FALSE, col = col,

+ xlab = "x-ray result", ylab = "empirical frequency",

+ key = list(points = list(pch = c(19, 19), col = col),

+ corner = c(0.95, 0.95),

+ text = list(c("controls", "cases"))))
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Logistic Regression

Principal Components Plot
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Logistic Regression

Principal Components Plot (R Code)

> pc = princomp(as.matrix(cancer[, c("Age", "Acid")]))$scores

>

> col = trellis.par.get()$superpose.symbol$col[c(3, 7)]

> names(col) = c("no", "yes")

>

> library(lattice)

> xyplot(Comp.2 ~ Comp.1, data = as.data.frame(pc),

+ col = col[cancer$Nodal], pch = 19,

+ xlab = "first principal component",

+ ylab = "second principal component",

+ key = list(points = list(pch = c(19, 19), col = col),

+ corner = c(0.95, 0.05),

+ text = list(c("controls", "cases"))))

Marco Scutari University of Oxford



Logistic Regression

Fitting the Logistic Regression Model
> m = glm(Nodal ~ Age + Acid + Xray + Size + Grade, data = cancer,

+ family = binomial(link = "logit"))

> summary(m)

[...]

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0110 -0.7020 -0.3654 0.5723 1.9852

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.62590 3.45981 0.470 0.6384

Age -0.06926 0.05788 -1.197 0.2314

Acid 2.43445 1.31583 1.850 0.0643 .

Xraypositive 2.04534 0.80718 2.534 0.0113 *

Sizesmall -1.56410 0.77401 -2.021 0.0433 *

Grademore 0.76142 0.77077 0.988 0.3232

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.252 on 52 degrees of freedom

Residual deviance: 48.126 on 47 degrees of freedom

AIC: 60.126
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Logistic Regression

Plotting Fitted and Observed Responses
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Logistic Regression

Plotting Fitted and Observed Responses (R Code)

> library(lattice)

> col = trellis.par.get()$superpose.symbol$col[c(3, 7)]

>

> xyplot(as.numeric(cancer$Nodal) - 1 ~ fitted(m),

+ xlab = expression(hat(pi)[i]) , ylab = "case-control labels",

+ scales = list(x = list(at = c(0:5 * 0.2, 0.5)),

+ y = list(at = c(0, 1)), tck = c(1, 0)),

+ panel = function(x, y, ...) {

+

+ panel.xyplot(x, y, col = col[y + 1],

+ pch = c(19, 1)[(((y == 0) & (x > 0.5)) | ((y == 1) & (x < 0.5))) + 1])

+ panel.abline(v = 0.5, col = "grey", lty = 2)

+ panel.text(x = 0.25, y = 0.1, pos = 1, "controls, correctly predicted")

+ panel.text(x = 0.75, y = 0.9, pos = 3, "cases, correctly predicted")

+

+ })
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Logistic Regression

predict(m): Classify Cases and Controls

The information in the figure can be produced with predict(), either from
the data used to fit the model m or from new data.

> PRED = ifelse(predict(m, type = "response") >= 0.5, "yes", "no")

> table(OBS = cancer$Nodal, PRED)

PRED

OBS no yes

no 28 5

yes 7 13

The four cells in the table above, which is called a confusion matrix, indicate
how many observations are correctly identified as cases or controls by the
model:

• Cases with a predicted π̂i > 0.5 are true positives (TP).

• Cases with π̂i < 0.5 are false negatives (FN).

• Controls with π̂i > 0.5 are false positives (FP).

• Controls with π̂i < 0.5 are true negatives (TN).
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Logistic Regression

Accuracy, Sensitivity and Specificity

The goodness of fit and predictive ability of logistic regression (as well as other
binary classification models) are measured using various functions of TP, TN,
FP and FN. Say the number of cases is P = TP + FN and the number of
controls is N = TN + FP.
The first of these measures is the accuracy, the proportions of observations
that are correctly classified:

ACCURACY =
TP + TN

P + N
=

observations that are correctly classified

sample size
. (58)

Then there are sensitivity,

SENSITIVITY =
TP

P
=

observations correctly classified as cases

number of cases
; (59)

and specificity

SPECIFICITY =
TN

N
=

observations correctly classified as controls

number of controls
. (60)
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Logistic Regression

Precision and Recall

Another set of measures are precision

PRECISION =
TP

TP + FP
=

observations correctly classified as cases

observations classified as cases
(61)

and recall, which is another name for sensitivity.

To add to the confusion, sensitivity is also called the true positive rate
(TPR) and specificity is also called the true negative rate (TNR). This
naming convention is the same as in multiple testing adjustment, where
we try to control the false positive rate (FPR) through the false
discovery rate (FDR):

FPR =
FP

N
and FDR =

FP

TP + FP
= 1− PRECISION. (62)
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Logistic Regression

Computing Them From the Confusion Matrix

So, in the confusion matrix we have

> tab = table(OBS = cancer$Nodal, PRED)

> TN = tab[OBS = "no", PRED = "no"]

> FN = tab[OBS = "yes", PRED = "no"]

> FP = tab[OBS = "no", PRED = "yes"]

> TP = tab[OBS = "yes", PRED = "yes"]

and then we can compute

> accuracy = (TP + TN) / nrow(cancer)

> accuracy

[1] 0.7735849

> sensitivity = TP / (TP + FN)

> sensitivity

[1] 0.65

> specificity = TN / (TN + FP)

> specificity

[1] 0.8484848

All these measures are defined in [0, 1], and high values are assigned to
good models which fit or predict the data well.
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Logistic Regression

Computing Them Using Cross-Validation

> # shuffle the data to get unbiased splits.

> kcv = split(sample(nrow(cancer)), seq_len(10))

>

> predicted = lapply(kcv, function(test) {

+

+ # split training and test.

+ dtraining = cancer[-test, ]

+ dtest = cancer[test, ]

+ # fit the model on the training data.

+ model = glm(Nodal ~ Age + Acid + Xray + Size + Grade, data = dtraining,

+ family = binomial(link = "logit"))

+ # predict the data in the test data.

+ PRED = ifelse(predict(model, newdata = dtest, type = "response") >= 0.5,

+ "yes", "no")

+ # return the observed-predicted pairs.

+ return(data.frame(OBS = dtest$Nodal, PRED = PRED))

+

+ })

>

> # collate all the predictions from the different folds.

> predicted = do.call("rbind", predicted)

> table(predicted)
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Logistic Regression

Comparing Goodness of Fit and Predictive Power
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Logistic Regression

Comparing Goodness of Fit and Predictive Power (R Code)

> d = data.frame(

+ MEASURE = rep(c("ACCURACY", "SENSITIVITY", "SPECIFICITY"), 2),

+ MODEL = c(rep("FITTED", 3), rep("XVAL", 3)),

+ VALUE = c(0.7735, 0.65,0.8484,0.6981,0.55,0.7878))

>

> library(lattice)

> col = trellis.par.get()$superpose.symbol$col[c(1, 7)]

>

> barchart(MEASURE ~ VALUE, group = MODEL, data = d,

+ xlim = c(0, 1.05), xlab = "value", scales = list(tck = c(1, 0)),

+ auto.key = list(corner = c(0.95, 0.5), points = FALSE, rectangles = TRUE,

+ text = c("fitted model", "cross-validation"),

+ reverse.rows = TRUE),

+ par.settings = simpleTheme(col = col),

+ panel = function(x, y, groups, ...) {

+

+ panel.barchart(x, y, groups = groups, ...)

+ panel.text(x = x,

+ y = as.numeric(y) + ((as.numeric(groups) - 1.5) * 2) * 0.15,

+ labels = sprintf("%.2f", x), pos = 4)

+

+ })
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Logistic Regression

Predictive Power and The Bias-Variance Trade-Off

Logistic regression is susceptible to overfitting, same as classic linear
models. Symptoms are markedly reduced values for sensitivity, specificity
and accuracy in cross-validation compared to the model fitted on the
whole data. Some caution is needed in reasoning on these quantities.

Some caution is needed in reasoning on these quantities. For example,
note that when the sample is very unbalanced (i.e. very few cases
compared to controls):

• specificity is inflated, because there are so many N that all models
will have a high TN and thus TN/N→ 1;

• accuracy is similarly inflated, because TN dominates TP so
TN + TP ' TN for all models;

• sensitivity loses discriminatory power, because TP/P is defined in
increments of 1/P.
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Logistic Regression

ROC Curves

A graphical, synthetic summary of such classification goodness-of-fit measure is
the receiver operating characteristic (ROC) curve. Model performance is
represented as a curve of sensitivity (the true positive rate) against
1− SPECIFICITY (the false positive rate). The curve is bounded in
[0, 1]× [0, 1], the ROC space:

• A perfect classification model would be in (0, 1) because it has sensitivity
1 (no false negatives) and specificity 1 (no false positives).

• A model that is equivalent to a random guess would be on the diagonal.

• Models above the diagonal are good classifiers, models below are poor
classifiers.

The curve is produced by varying the discrimination threshold that determines
whether an observation is classified as a case or not; for logistic regression the
default is π̂i > 0.5. This can be done either in the context of model fitting or
in cross-validation.
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Logistic Regression

Building a ROC Curve (R Code)

Building a ROC curve on the whole data entails fitting the model once,
building the confusion matrix and then varying the value of π̂i.

> m = glm(Nodal ~ Age + Acid + Xray + Size + Grade, data = cancer,

+ family = binomial(link = "logit"))

> roc = data.frame(x = numeric(41), y = numeric(41))

> # 40 thresholds in 2.5% increments.

> thr = seq(from = 0, to = 1, by = 0.025)

> for (i in seq_along(thr)) {

+ PRED = ifelse(predict(m, type = "response") >= thr[i], "yes", "no")

+ PRED = factor(PRED, levels = c("no", "yes"))

+ tab = table(OBS = cancer$Nodal, PRED, useNA = "always")

+ # compute false positive rate.

+ roc[i, "x"] = tab[OBS = "no", PRED = "yes"] / sum(tab[OBS = "no", ])

+ # compute true positive rate.

+ roc[i, "y"] = tab[OBS = "yes", PRED = "yes"] / sum(tab[OBS = "yes", ])

+ }#FOR

Doing the same from cross-validated predictions works in the same way;
unless multiple runs of cross-validation can be used to produce averaged
coordinates for each thr for improved stability.
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Logistic Regression

The ROC Curve for the Logistic Regression Model
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Logistic Regression

Building and Interpreting a ROC Curve

• It is tricky to guess how many values of the threshold are needed to
obtain a smooth-ish curve, because neither axis is a direct function of
the threshold. This is important if the model takes time to fit and/or
cross-validation is run many times.

• Models can be compared but it is unlikely any of them will strictly
dominate the others over the whole ROC space. The closer a ROC
curve is to the left and upper bounds of the ROC space, the better
classifier is the corresponding model.

• All curves start in (0, 0) and end up (0, 1), and any realistic model for
binary responses produces curves that are strictly above the diagonal.
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Logistic Regression

Comparing ROC Curves
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Logistic Regression

A Summary Statistic for ROC Curves

Clearly comparing models through their ROC curves is a principled
approach, but it does not scale well to large number of models and it is
ambiguous when the curves overlap and cross each other.

A popular summary statistic for a ROC curve is the area under the curve
(AUC). If the curve is above the diagonal it ranges from 0.5 (e.g. the
model does not perform any better than picking at random) and 1 (e.g.
perfect classifier). An informal evaluation scale is:

from to interpretation

0 0.60 Bad
0.61 0.70 Acceptable
0.71 0.80 Good
0.81 1 Excellent

and 0.75 is a rough threshold for classification accuracy on
cross-validated predictions.
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Logistic Regression

Comparing AUC Values
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Logistic Regression

Comparing AUC Values (R Code)

> m1 = glm(Nodal ~ Age + Acid + Xray + Size + Grade, data = cancer,

+ family = binomial(link = "logit"))

> m2 = glm(Nodal ~ Age, data = cancer, family = binomial(link = "logit"))

> roc = data.frame(x = numeric(82), y = numeric(82),

+ model = c(rep("M1", 41), rep("M2", 41)))

[...]

> xyplot(y ~ x, groups = model, data = roc, type = "b",

+ scales = list(tck = c(1, 0)),

+ xlab = "false positive rate", ylab = "true positive rate", pch = 19,

+ key = list(points = list(pch = 19, col = col), corner = c(0.85, 0.10),

+ text = list(c("full model", "reduced model with only Age"))),

+ panel = function(x, y, groups, ...) {

+

+ panel.polygon(x = c(1, x[groups == "M1"]), y = c(0, y[groups == "M1"]),

+ col = col[1], border = col[1], alpha = 0.2)

+ panel.polygon(x = c(1, x[groups == "M2"]), y = c(0, y[groups == "M2"]),

+ col = col[2], border = col[2], alpha = 0.2)

+ panel.abline(0, 1, lty = 2, col = "black")

+ panel.xyplot(x, y, groups, ...)

+ panel.text(x = 0.65, y = 0.35, "AUC = 0.57")

+ panel.text(x = 0.35, y = 0.65, "AUC = 0.84")

+

+ })
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Logistic Regression

Ranking Models by AUC Values

The AUC for a ROC curve can be easily approximated using the
trapezoid method, which is a one-liner from the roc data frame:

> r1 = roc[roc$model == "M1", ]

> r2 = roc[roc$model == "M2", ]

> sum(abs(r1$x[2:41] - r1$x[1:40]) * (r1$y[2:41] + r1$y[1:40]) / 2)

[1] 0.8424242

> sum(abs(r2$x[2:41] - r2$x[1:40]) * (r2$y[2:41] + r2$y[1:40]) / 2)

[1] 0.5742424

We can then rank the models by AUC and use it as we would use AIC or
BIC to select the best classifier. Unlike deviance tests, models need not
to be nested. As usual, AUC has to be computed under cross-validation
to select the best predictive model.

Note, however, that telling whether two AUC values are significantly
different is much of an open problem without an widespread, accepted
solution.
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Logistic Regression

predict(m): Interval Predictions
In addition to class labels, predict(m) also provides the fitted or
predicted η̂i complete with the respective standard errors.

> pred = predict.glm(m, newdata = cancer, se.fit = TRUE, type = "link")

They are useful to compute confidence intervals for:

• the odds for each observation,

log

(
πi

1− πi

)
∈
[
η̂i ± z1−α/2

√
VAR(η̂i)

]
⇒

πi
1− πi

∈
[
eη̂i±z1−α/2

√
VAR(η̂i)

]
; (63)

• and the corresponding probability of success (i.e. yes for the
cancer data),

πi ∈

[
eη̂i−z1−α/2

√
VAR(η̂i)

1 + eη̂i−z1−α/2
√

VAR(η̂i)
,

eη̂i+z1−α/2
√

VAR(η̂i)

1 + eη̂i+z1−α/2
√

VAR(η̂i)

]
. (64)
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Logistic Regression

Interpreting Odds: Point and Interval Estimates
Approximate confidence intervals are easy to obtain from pred,

> fitted exp(pred$fit)

> low = exp(pred$fit + qnorm(0.025) * pred$se.fit)

> high = exp(pred$fit + qnorm(0.975) * pred$se.fit)

and can be plotted in what is called an odds (ratio) plot. If zero falls within the
confidence interval for a certain observation, then the odds are not significantly
different from one, or equivalently π̂i is not significantly different from 0.5.
Given the long tradition of using logistic regression in epidemiological studies,
practitioners have established conventional qualitative descriptions for odds and
odds-ratios that look like this:

odds ratio π̂i susceptibility to disease

up to 0.3 up to 0.23 strong benefit (low risk of disease)
0.4 to 0.5 0.24 to 0.33 moderate benefit
0.6 to 0.8 0.34 to 0.44 weak benefit
0.9 to 1.1 0.45 to 0.52 no effect (no particular risk factors)
1.2 to 1.6 0.53 to 0.62 weak hazard
1.7 to 2.5 0.63 to 0.71 moderate hazard
2.6 or more 0.72 or more strong hazard (high risk of disease)
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Logistic Regression

Odds (Ratio) Plot

95% confidence intervals (on log−scale)
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Logistic Regression

Odds (Ratio) Plot (R Code)

> fit = pred$fit

> low = pred$fit + qnorm(0.025) * pred$se.fit

> high = pred$fit + qnorm(0.975) * pred$se.fit

> col = trellis.par.get()$superpose.symbol$col[c(3, 7)]

> ticks = c(1/8, 1/4, 1/2, 1, 2, 4, 8)

> xyplot(seq(nrow(cancer)) ~ fit + low + high,

+ xlab = "95% confidence intervals (on log-scale)", ylab = "", col = col,

+ scales = list(x = list(at = log(ticks), label = as.character(ticks)),

+ y = list(at = numeric(0)), tck = c(1, 0)),

+ key = list(points = list(pch = c(19, 19), col = col),

+ corner = c(0.95, 0.05), text = list(c("controls", "cases"))),

+ panel = function(x, y, groups, ...) {

+

+ panel.segments(x0 = x[groups == "low"], x1 = x[groups == "high"],

+ y0 = y, y1 = y, col = "grey")

+ panel.xyplot(x[groups == "fit"], y[groups == "fit"], pch = 19,

+ col = col[(x[groups == "fit"] > 0) + 1])

+ panel.xyplot(x[groups != "fit"], y[groups != "fit"], pch = "|",

+ col = "grey")

+ panel.abline(v = 0, col = "black", lty = 2)

+

+ })
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Logistic Regression

Success Probabilities: Point and Interval Estimates

Success probabilities π̂i and odds can be used interchangeably to
investigate the same problems, because they are deterministic functions
of each other:

π̂i
1− π̂i

= eη̂i ⇐⇒ π̂i =
eη̂i

1 + eη̂i
. (65)

One may be more common than the other depending on the field. In
plotting odds are more common, and often printed on a log-scale to
make the confidence intervals symmetric. They are also used to
compare the overall success probability for the same response across
different models (on the same data) or across different data (with the
same model).
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Logistic Regression

A Note: The Hauck-Donner Phenomenon

Testing regression coefficients with Wald tests with deviance tests is
more reliable than using the corresponding Wald tests due to a paradox
called the Hauck - Donner phenomenon. What happens is that as the
distance between the β̂j and the null value increases, the test statistic
tβj decreases to 0 (and so does zβj ). This means, counter-intuitively,
that we might fail to reject the null hypothesis because the effect of an
explanatory variable is “too significant”!

This can happen when there is perfect or near-perfect separation of
successes and failures in terms of an explanatory variable. Then the√

VAR(β̂j)→∞ faster than β̂j →∞ which means that tβj → 0.
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Log-Linear Regression

Model Formulation

Log-linear regression is a Poisson GLM with the canonical logarithmic
link

log(λi) = ηi = β0 + xi1β1 + . . .+ xipβp (66)

which means that for each observation

λi = exp(β0 + xi1β1 + . . .+ xipβp) (67)

The relationship is linear between the logarithm of the intensity (i.e. the
expected number of arrivals) and the regressors. In other words, each
regression coefficient introduces a multiplicative contribution linked to
changes in the corresponding explanatory variable:

λi = exp(β0 + [xi1 + 1]β1) = exp(β0) exp(xi1β1) exp(β1). (68)
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Log-Linear Regression

A Link Between Logistic and Log-Linear Models

If all the explanatory variables are categorical, the response can be
summarised as a count for each of their configurations and then
modelled as a Poisson random variable.

> library(doBy)

> cancer$Nodal = as.numeric(cancer$Nodal == "yes")

> counts = summaryBy(Nodal ~ Size + Grade + Xray, data = cancer,

+ FUN = c(sum, length))

> counts

Size Grade Xray Nodal.sum Nodal.length

1 large less negative 4 9

2 large less positive 3 3

3 large more negative 2 8

4 large more positive 6 7

5 small less negative 1 17

6 small less positive 1 4

7 small more negative 2 4

8 small more positive 1 1

> glm(Nodal.sum ~ Size + Grade + Xray, data = counts,

+ family = poisson(link = "log"), offset = log(Nodal.length))

(More on the offset argument later.)
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Log-Linear Regression

Species in the Galapagos: an Example from Ecology

This data set from Ramsey & Schafer’s “Statistical Sleuth” book describes the
number of native and non-native species in relation to:

• Island: name of the island.

• Total number of species and number of native species.

• Area (km2) and Elevation (m).

• Distance from the nearest island (DistNear) and from Santa Cruz
(DistSc).

• AreaNear: area of the nearest island.

> galapagos = read.table("galapagos.txt", header = TRUE)

> head(galapagos)

Island Total Native Area Elev DistNear DistSc AreaNear

1 Baltra 58 23 25.09 332 0.6 0.6 1.84

2 Bartolome 31 21 1.24 109 0.6 26.3 572.33

3 Caldwell 3 3 0.21 114 2.8 58.7 0.78

4 Champion 25 9 0.10 46 1.9 47.4 0.18

5 Coamano 2 1 1.05 130 1.9 1.9 903.82

6 Daphne Major 18 11 0.34 119 8.0 8.0 1.84
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Log-Linear Regression

Modelling the Total Number of Species

> m = glm(Total ~ 1, data = galapagos, family = poisson(link = "log"))

> m = step(m, scope = ~ log(Area) + log(Elev) + log(DistNear) + log(AreaNear))

Start: AIC=3673.56; Total ~ 1

[...]

Step: AIC=552.09; Total ~ log(Area) + log(AreaNear) + log(DistNear)

Df Deviance AIC

<none> 383.3 552.1

+ log(Elev) 1 382.4 553.2

- log(DistNear) 1 409.8 576.7

- log(AreaNear) 1 656.8 823.6

- log(Area) 1 3320.2 3487.0

Call: glm(formula = Total ~ log(Area) + log(AreaNear) + log(DistNear),

family = poisson(link = "log"), data = galapagos)

Coefficients:

(Intercept) log(Area) log(AreaNear) log(DistNear)

3.37832 0.36626 -0.09916 -0.05982

Degrees of Freedom: 29 Total (i.e. Null); 26 Residual

Null Deviance: 3511

Residual Deviance: 383.3 AIC: 552.1
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Log-Linear Regression

Fitted Values and Residuals
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Log-Linear Regression

Fitted Values and Residuals (R Code)

> library(lattice)

> library(gridExtra)

>

> p2 = xyplot(Total ~ pred, data = galapagos, pch = 19,

+ xlab = "fitted values", ylab = "observed values",

+ scales = list(tck = c(1, 0)),

+ panel = function(...) {

+ panel.xyplot(...)

+ panel.abline(0, 1, col = "grey", lty = 2)

+ })

>

> p1 = xyplot(Total - pred ~ pred, data = galapagos, pch = 19,

+ xlab = "fitted values", ylab = "residuals",

+ scales = list(tck = c(1, 0)),

+ panel = function(...) {

+ panel.xyplot(...)

+ panel.abline(h = 0, col = "grey", lty = 2)

+ })

>

> grid.arrange(p1, p2, ncol = 2)
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Log-Linear Regression

Residuals Look Good But the Residual Deviance is Huge?

There is no apparent pattern in the residuals, which is contrary to
expectations. This can happen when there are few or no duplicate values in the
response, so each point in the residuals plots is essentially its own pattern.
Residuals look as if they came from a Gaussian GLM because the λ̂i are large
enough that Pois(λ)→ N(λ, λ) but are spread out in such a way that
heteroschedasticity does not show too much.
Then why is the residual deviance (383.26) is large compared to the residual
degrees of freedom (26)? It is due to overdispersion:

> psi = sum(residuals(m, type = "pearson")^2)/m$df.res

> psi

[1] 16.16604

Rescaling the residual deviance by the dispersion parameter ψ̂ gives a value
that is much closer to the residual degrees of freedom,

> 383.26 / 16.16

[1] 23.71658

which are the expected value for the underlying distribution, after all.

Marco Scutari University of Oxford



Log-Linear Regression

Yes, Raw Residuals Really Are Heteroschedastic
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Log-Linear Regression

But Pearson’s Residuals Are Not
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Log-Linear Regression

Residuals Plots (R Code)

> pred = predict(m, type = "response")

> # raw residuals.

> xyplot(Total - pred ~ log(pred), data = galapagos, pch = 19,

+ xlab = "log(fitted values)", ylab = "residuals",

+ scales = list(tck = c(1, 0)),

+ panel = function(...) {

+ panel.xyplot(...)

+ panel.abline(h = 0, col = "grey", lty = 2)

+ panel.polygon(x = c(20/15, 7, 7), y = c(0, 85, -85),

+ col = col, border = col, alpha = 0.2)

+ })

> # scaled residuals.

> xyplot(residuals(m, type = "pearson") ~ log(pred), data = galapagos,

+ xlab = "log(fitted values)", ylab = "residuals", pch = 19,

+ scales = list(tck = c(1, 0)),

+ panel = function(...) {

+ panel.xyplot(...)

+ panel.abline(h = 0, col = "grey", lty = 2)

+ panel.polygon(x = c(0, 0, 7, 7), y = c(-5, 5, 5, -5),

+ col = col, border = col, alpha = 0.2)

+ })
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Log-Linear Regression

Modelling Native Species: Offsets

Now, Poisson random variables are usually characterised as modelling the
“number of events occurring in a fixed interval of time and/or space.” This is
not the case either for the cancer data (i.e. the number ni of patients for each
configuration of the explanatory variables is different) or for the galapagos

data (i.e. each island has a different number ni of species that may be or may
not be native). To make up for this we can introduce β∗0 = niβ0 in

log(λi)− log(ni) = β∗0 + xi1β1 + . . .+ xipβp (69)

to have an offset that expresses the exposure e.g. the length of the time
interval in which events were counted or the number of subjects in the study. It
must be a known constant.

The Poisson GLM then models an set of observation-specific intensities,

log

(
λi
ni

)
= β∗0 + xi1β1 + . . .+ xipβp. (70)
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Log-Linear Regression

The Wrong Model, Without Offsets

> summary(glm(Native ~ log(Area) + log(AreaNear) + log(DistNear),

+ family = poisson(link = "log"), data = galapagos)

[...]

Deviance Residuals:

Min 1Q Median 3Q Max

-3.4748 -1.6666 0.1745 0.6280 3.8165

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.59389 0.07240 35.826 < 2e-16 ***

log(Area) 0.27002 0.01255 21.521 < 2e-16 ***

log(AreaNear) -0.05023 0.01072 -4.684 2.82e-06 ***

log(DistNear) -0.06099 0.02102 -2.902 0.00371 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 700.717 on 29 degrees of freedom

Residual deviance: 96.448 on 26 degrees of freedom

AIC: 241.74
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Log-Linear Regression

A Better Model, With Offsets

> summary(glm(Native ~ log(Area) + log(AreaNear) + log(DistNear),

+ family = poisson(link = "log"), data = galapagos, offset = log(Total)))

[...]

Deviance Residuals:

Min 1Q Median 3Q Max

-2.6640 -0.4904 0.2651 0.9648 2.2015

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.83891 0.07245 -11.579 < 2e-16 ***

log(Area) -0.08306 0.01207 -6.879 6.04e-12 ***

log(AreaNear) 0.03622 0.01045 3.467 0.000526 ***

log(DistNear) 0.01230 0.02103 0.585 0.558465

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 85.563 on 29 degrees of freedom

Residual deviance: 30.982 on 26 degrees of freedom

AIC: 176.27
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Log-Linear Regression

Model Selection and Validation
The model can equivalently be specified putting the offset variable in
the formula.

> summary(glm(Native ~ log(Area) + log(AreaNear) + log(DistNear) +

+ offset(log(Total)), family = poisson(link = "log"),

+ data = galapagos))

Then we can use stepwise selection to look for a better offsets model.

> m = glm(Native ~ 1 + offset(log(Total)), family = poisson(link = "log"),

+ data = galapagos)

> m = step(m, scope = ~ log(Area) + log(Elev) + log(DistNear) +

+ log(AreaNear) + offset(log(Total)))

> formula(m)

Native ~ log(Area) + log(AreaNear) + offset(log(Total))

That model has a better AIC than the original non-offsets model, and on
top of that it does not suffer from overdispersion (i.e. ψ̂ is close to 1).

> AIC(m)

[1] 174.6107

> sum(residuals(m, type = "pearson")^2)/m$df.res

[1] 1.195945

Marco Scutari University of Oxford



Advanced Models

Marco Scutari University of Oxford



Advanced Models

Quasi-Likelihood Models

From (33) we have that the likelihood equations for the βj can be
written as

dl(βj)

dβj
=

n∑
i=1

(yi − µi)
V (µi)

dµi
dηi

xij = 0 for all j = 1, . . . , p (71)

to emphasise that the GLM depends on the distribution assumed for the
response only through µi and V (µi); and that assumption determines
how the two are linked.
So, if we do without any distributional assumption and we switch to a
semi-parametric model in which we only assume

VAR(Yi) = V (µi), (72)

we obtain a quasi-likelihood model that is more flexible but at the same
time reverts back to a classic GLM if we add the distributional
assumptions back (e.g. the β̂j coincide with the maximum likelihood
estimates). Here we assume implicitly that a(ψ) = 1.
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Advanced Models

Quasi-Binomial and Quasi-Poisson

In the Poisson GLM the variance is determined by

V (µi) = µi (73)

but in a quasi-likelihood model it more convenient to have

V (µi) = ψµi (74)

to model overdispersion (typically, it assumed that ψ > 1). Similarly, in a
binomial quasi-likelihood model we can assume

V (µi) = ψnπi(1− πi). (75)

In both cases ψ drops out the likelihood equations, much like the residual
variance does in Gaussian regression models, so model estimation is identical to
that of Poisson and binomial GLMs. An estimated ψ̂ can be plugged in
afterwards for the purpose of rescaling deviance.
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Advanced Models

A Quasi-Poisson Model for the Galapagos

The syntax of glm() has family = quasipoisson instead of poisson, and
the AIC is NA because the likelihood is undefined. The deviance is not rescaled
by ψ̂ = 1.1959 in the output, we must do that by hand.

> summary(glm(Native ~ log(Area) + log(AreaNear) + offset(log(Total)),

+ family = quasipoisson(link = "log"), data = galapagos))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.82113 0.07158 -11.471 6.92e-12 ***

log(Area) -0.08428 0.01295 -6.507 5.63e-07 ***

log(AreaNear) 0.03570 0.01140 3.132 0.00415 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 1.195946)

Null deviance: 85.563 on 29 degrees of freedom

Residual deviance: 31.323 on 27 degrees of freedom

AIC: NA
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Advanced Models

A Quasi-Binomial Model for Prostatic Cancer

It is actually possible to have a ψ̂ < 1, but in general it is implicitly expected
that ψ̂ > 1. Here ψ̂ = 1 for practical purposes.

> summary(glm(Nodal ~ Age + Acid + Xray + Size + Grade, data = cancer,

+ family = quasibinomial(link = "logit")))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.62590 3.45209 0.471 0.6398

Age -0.06926 0.05775 -1.199 0.2364

Acid 2.43445 1.31289 1.854 0.0700 .

Xraypositive 2.04534 0.80538 2.540 0.0145 *

Sizesmall -1.56410 0.77228 -2.025 0.0485 *

Grademore 0.76142 0.76905 0.990 0.3272

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family taken to be 0.9955437)

Null deviance: 70.252 on 52 degrees of freedom

Residual deviance: 48.126 on 47 degrees of freedom

AIC: NA
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Advanced Models

Penalised Generalised Linear Models

Penalised regression in its classic form was introduced for linear models
as penalised least squares optimisation, e.g.

argmin
β

{
(y −Xβ)T (y −Xβ) + λ2

p∑
i=0

β2i

}
, λ2 > 0; (76)

but in that context it can be equivalently formulated as a penalised
maximum (log-)likelihood problem. In that latter form it may also be
applied to GLMs as e.g.

argmax
β


n∑
i=1

l(g(xiβ), yi)− λ2
p∑
j=1

β2j

 , λ2 > 0 (77)

to produce the ridge, lasso and elastic net equivalents of logistic and
log-linear regression models.
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Advanced Models

Gene Association Study: Crohn’s Disease

The data used in the unassessed practical are part of a case-control
study on Crohn’s disease from the ENCODE project (ENCyclopedia Of
DNA Elements) comprising 101 individuals (59 cases, 42 controls). For
each of them we have a marker profile containing the expression of 5
candidate genes.

The original study contains 13K gene expressions, which makes it
impossible to fit logistic regression in its basic form. Suitable models
are:

• a logistic ridge regression (next slide);

• a random-effects model (more on that in the hierarchical model
course);

• a collection of single-gene logistic regressions to obtain the β̂j ,
which are then treated as independent and used jointly (ugly but
sometimes the data are so big there is no other sensible way).
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Advanced Models

Penalised GLMs with penalized() and glmnet()

The penalized and glmnet packages can be used to fit such models using the
same functions as for classic linear models. For instance:

> opt.lambda2 = optL2(response = expr$CASE,

+ penalized = expr[, c("G1", "G2", "G3", "G4", "G5")],

+ model = "logistic")

> penalized(response = expr$CASE,

+ penalized = expr[, c("G1", "G2", "G3", "G4", "G5")],

+ model = "logistic", lambda2 = opt.lambda2$lambda)

Penalized logistic regression object

6 regression coefficients

Loglikelihood = -18.2756

L2 penalty = 3.282452 at lambda2 = 175.3674

An equivalent model can be fitted with glmnet() using the family =

"binomial" argument.

For log-linear regression, use model = "poisson" in penalized() and
family = "poisson" in glmnet().
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Advanced Models

ROC Curves for Penalised and Vanilla GLMs

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

lin
e 

of
 n

o−
dis

cr
im

ina
tio

n

vanilla GLM
penalised GLM

Marco Scutari University of Oxford



Advanced Models

Bayesian GLMs: the Zero-Inflated Poisson Model

Suppose you have a response variable representing counts, which would
ideally be well fitted by a Poisson GLM. However, the data contain an
abnormal number of yi = 0 due to the nature of the underlying
phenomenon.

To account for this we can re-formulate the model as

Yi ∼

{
0 with probability π

Pois(λ) with probability 1− π.
(78)

or equivalently

P(Yi = 0) = π + (1− π)e−λ, P(Yi = yi) = (1− π)
λyie−λ

yi!
. (79)

This is known as zero-inflated Poisson (ZIP) model.
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Advanced Models

Mixture Model, or Bayesian Model?

From a frequentist point of view, this model is a mixture model
combining a Poisson distributions and a Dirichlet mass at zero. Each
observation is generated by one of these two distributions (the
components of the mixture), but we do not which. Therefore, model
estimation is treated as a missing data problem in which there is an
unobserved auxiliary dummy variable encoding which that missing
information.

From a Bayesian point of view, we have a Poisson likelihood and we
assign a prior distribution to λ with π as hyperparameter:

f(λ;π) = 0 · π + λ · (1− π). (80)

That is a spike-and-slab prior, because is combines a diffuse probability
distribution (the Pois(λ)) with a point probability mass (the spike at
zero).
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Advanced Models

Estimates for λ and π

The methods of moments gives closed form estimates for both λ and π:

λ̂MO =
s2 + ȳ2 − ȳ

ȳ
and π̂MO =

s2 − ȳ
s2 + ȳ2 − ȳ

(81)

where m and s2 are the sample mean and variance.

The maximum likelihood solution is not in closed form, but λ can be
estimated numerically by solving

ȳ(1− e−λ) = λ
(

1− n0
n

)
(82)

where n0 is the number of observed zeros; and then that estimate can
be plugged in

π̂ML = 1− ȳ

λ̂ML

. (83)

to estimate π.
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Advanced Models

Zero-Inflated Poisson Regression

In the context of regression, the ZIP model takes the form

λi = 0 · π + exp(xi1β1 + . . .+ xipβp) · (1− πi) (84)

with

log(λi) = β0 + xi1β1 + . . .+ xipβp (85)

log

(
πi

1− πi

)
= γ0 + zi1γ1 + . . .+ ziqγq (86)

where the explanatory variables xi1, . . . , xip for λi may or many not be
the same as (or overlap with) the explanatory variables zi1, . . . , zip for
πi. Estimation is performed as a missing data problem with the
expectation-maximisation (EM) algorithm.
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Advanced Models

Articles Produced by Ph.D. Students

This data set comprises 915 biochemistry Ph.D. students and was collected to
investigate differences in the career paths between men and women:

• art: articles published in last 3 years of Ph.D.;

• fem: gender of the student, Men or Women;

• mar: marital status of the student, Single or Married;

• kid5: number of children aged 5 or younger;

• phd: prestige of the department;

• ment articles published by the student’s mentor in the last 3 years.

> library(pscl)

> data(bioChemists)

> str(bioChemists)

’data.frame’: 915 obs. of 6 variables:

$ art : int 0 0 0 0 0 0 0 0 0 0 ...

$ fem : Factor w/ 2 levels "Men","Women": 1 2 2 1 2 2 2 1 1 2 ...

$ mar : Factor w/ 2 levels "Single","Married": 2 1 1 2 1 2 1 2 1 2 ...

$ kid5: num 0 0 0 1 0 2 0 2 0 0 ...

$ phd : num 2.52 2.05 3.75 1.18 3.75 ...

$ ment: int 7 6 6 3 26 2 3 4 6 0 ...
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Bad: The Plain Poisson GLM Model

> summary(glm(art ~ ., data = bioChemists, family = poisson))

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.304617 0.102981 2.958 0.0031 **

femWomen -0.224594 0.054613 -4.112 3.92e-05 ***

marMarried 0.155243 0.061374 2.529 0.0114 *

kid5 -0.184883 0.040127 -4.607 4.08e-06 ***

phd 0.012823 0.026397 0.486 0.6271

ment 0.025543 0.002006 12.733 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1817.4 on 914 degrees of freedom

Residual deviance: 1634.4 on 909 degrees of freedom

AIC: 3314.1
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Nearly as Bad: A Quasi-Likelihood Model

> summary(glm(art ~ ., data = bioChemists, family = quasipoisson))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.304617 0.139273 2.187 0.028983 *

femWomen -0.224594 0.073860 -3.041 0.002427 **

marMarried 0.155243 0.083003 1.870 0.061759 .

kid5 -0.184883 0.054268 -3.407 0.000686 ***

phd 0.012823 0.035700 0.359 0.719544

ment 0.025543 0.002713 9.415 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 1.829006)

Null deviance: 1817.4 on 914 degrees of freedom

Residual deviance: 1634.4 on 909 degrees of freedom

AIC: NA

Marco Scutari University of Oxford



Advanced Models

Better: The Zero-Inflated Poisson Model

> summary(zeroinfl(art ~ . | ment, data = bioChemists))

[...]

Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.630168 0.113099 5.572 2.52e-08 ***

femWomen -0.218471 0.058793 -3.716 0.000202 ***

marMarried 0.133420 0.066170 2.016 0.043768 *

kid5 -0.162958 0.043371 -3.757 0.000172 ***

phd -0.006518 0.028533 -0.228 0.819312

ment 0.018298 0.002261 8.093 5.84e-16 ***

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6837 0.2053 -3.331 0.000866 ***

ment -0.1303 0.0402 -3.240 0.001194 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Number of iterations in BFGS optimization: 16

Log-likelihood: -1606 on 8 Df (so AIC = 3244)
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Another Model for Overdispersion: the Beta-Binomial

The beta-binomial model is the frequentist take on the classic Bayesian
conjugate model

f(y | π) ∼ Bi(n, πi) with π ∼ Beta(α, β) (87)

resulting in the compound model

f(y | n, α, β) =

(
y

n

)
Γ(y + α)Γ(n− y + β)

Γ(n+ α+ β)

Γ(α+ β)

Γ(α)Γ(β)
(88)

after integrating out π. The expected value and variance are

E(Y ) =
nα

α+ β
= nπ, (89)

VAR(Y ) =
nαβ(α+ β + n)

(α+ β)2(α+ β + 1)
= nπ(1− π)

α+ β + n

α+ β + 1
. (90)
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The Dispersion Parameter in the Beta-Binomial

The variance of the beta-binomial can be re-written as

VAR(Y ) = nπ(1− π)
α+ β + n

α+ β + 1
= nπ(1− π)[1 + (n− 1)ρ]. (91)

where ρ is effectively an over-dispersion parameter equal to

ρ =
1

α+ β + 1
. (92)

• If ρ→ 0 then α→ +∞ or β → +∞, and there is no
overdispersion because VAR(Y ) = nπ(1− π). The beta-binomial
simplifies into a plain binomial random variable.

• If ρ→ 1 is large because α→ 0 and β → 0, then
VAR(Y )� nπ(1− π).

Note that it is not possible to model under-dispersion in this way.
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Beta-Binomial as a Mixture Model

The beta-binomial model can also be seen as a random-effects or a
mixture model combining multiple Bernoulli trials.

• For example, if α = β = 1 then Beta(α, β) = U(0, 1) and all
Bernoulli trials have random πi from a non-informative prior
distribution.

• At the other end of the spectrum, if

1

α+ β
→ 0 (93)

then the variance of the Beta distribution converges to zero and so
all Bernoulli trials have the same exact π.
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Beta-Binomial and Quasi-Likelihood

It is possible to use a logistic link function to write beta-binomial
regression model akin to binomial GLM,

log

(
πi

1− πi

)
= β0 + xi1β1 + . . .+ xipβp (94)

and estimate the α and β hyperparameters through πi and the
dispersion parameter ψ. However, even though the model can be fitted
maximising the likelihood numerically, it does not have all the
favourable properties of GLMs because the beta-binomial distribution is
not part of the exponential family.

For this reason the quasi-likelihood approach is preferred, as it has a
similar formulation but more useful theoretical properties.
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That’s All Folks!
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