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Overview

1. Definitions and Notation
[DS, 1.1 & 4.1]

2. Simple and Multiple Linear Regression
[DS 1.2; WB, 2 & 3.1–3.4]

3. Prediction and Model Diagnostics
[DS 2; WB, 8 & 9]

4. Model Selection and Analysis of Variance
[DS 1.3, 4.3, 22 & 23; WS, 3.5]

5. Experimental Design
[M 3 & 4]

6. Robust and Advanced Regression methods
[DS 25]
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Definition and Notations
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Definition and Notations

Linear Models: the Definition

Suppose we have, for each of i = 1, . . . , n observations,

• a numeric variable of interest yi, the response;

• and a set of p explanatory variables or regressors xi1, xi2, . . . , xip.

Then in a linear model we have that, for each observation,

yi = β0 + xi1β1 + xi2β2 + . . .+ xipβp + εi = β0 +

p∑
j=1

xijβj + εi (1)

where β0 is the intercept (e.g. xi0 = 1 for all i), and εi is an error term
with mean zero (e.g.. E(εi) = 0). The model is linear in the parameters
β0, . . . , βp, which are called the regression coefficients.

It is also commonly assumed that the εi are uncorrelated or independent,
and often that they have the same variance σ2ε (homoscedasticity) as
opposed to individual variances σ2εi (heteroscedasticity).
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Definition and Notations

Linear Models: What is Stochastic and What is Not

• The explanatory variables xi1, xi2, . . . , xip are assumed to be fixed
effects, and the model is specified conditional on their values. This
implies that they are observed without error, otherwise they would
be stochastic, and that there is no missing value.

• The response variable yi is assumed to be stochastic through the
error term.

• The regression coefficients β0, β1, . . . , βp and the variance σ2ε of the
error term are unknown parameters, to be estimated from the data.

The role of the response and the regressors is not symmetric because of
the conditioning.
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Definition and Notations

Why Should We Care About Linear Models?

regressor

re
sp

on
se

regression line

real trend

Real-world phenomena can
rarely be expressed as linear
functions of some parameters
β0, β1, . . . , βp. However, we can
view a linear model as a
first-order approximation of
more complicated models, and it
is quite flexible in that we can
transform the response and
explanatory variables to make
the real trend as linear as
possible.

Marco Scutari University of Oxford



Definition and Notations

An Alternative Notation, from Linear Algebra

To make the notation more concise, we can stack the equations for the
n observations into matrices and vectors,

y
n×1

=


y1
y2
...
yn

 X
n×(p+1)

=


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 β
(p+1)×1

=


β0
β1
β2
...
βp

 ε
n×1

=


ε1
ε2
...
εn

 ,

so that we can write the whole system of equations as

y = Xβ + ε. (2)

Using this notation reformulates the problem in the context of linear
algebra, and thus makes it easier to apply results on manipulating and
solving systems of linear equations in matrix form.
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Definition and Notations

Fitting a Linear Model

The aim in fitting a linear model is estimating the regression coefficients
(β̂0, . . . , β̂p), and subsequently the fitted values (ŷi), the residuals (ε̂i)
and their variance (σ̂2ε). The three most fundamental ways of doing this
are:

• least squares, from optimisation theory and linear algebra;

• and maximum likelihood, which unlike the first two requires a
completely specified model.

Among more advanced techniques:

• penalised least squares and penalised likelihood;

• robust regression methods;

• weighted least squares;

• and splines.
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Definition and Notations

Estimation: Least Squares

The simplest form of least squares estimation is ordinary least squares
(OLS), which assumes:

• that the data are uncorrelated, i.e. COV(εi, εj) = 0 if i 6= j;

• and that the residuals have mean zero and they all have the same
variance, i.e. E(εi) = 0 and VAR(εi) = σ2ε for all observations.

The regression coefficients are estimated so as to minimise the residual
sum of squares (RSS):

{β̂0, . . . , β̂p} = argmin
β0,...,βp

n∑
i=1

ε2i

= argmin
β0,...,βp

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

= argmin
β

(y −Xβ)T (y −Xβ) (3)
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Definition and Notations

Estimation: Least Squares from Linear Algebra

In matrix form, we can reformulate that a linear system and solve it as:

y = Xβ

XTy = XTXβ

(XTX)−1XTy = β̂ (4)

under the condition that X is full rank, that is, that the explanatory
variables that make up the columns of X are linearly independent
(orthogonal).

If that is not the case XTX is not invertible and the estimate requires
advanced linear algebra techniques to compute (e.g. Moore-Penrose
pseudoinverse).
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Definition and Notations

Estimation: Least Squares, a Geometric Interpretation

Least squares estimation can
be intuitively explained as the
orthogonal projection of the
response y on the plane defined
by the linear combination of
the explanatory variables, with
the residuals ε̂ being
orthogonal to the projection ŷ.

In matrix terms, the projection matrix is P,

ŷ = Xβ̂ = X(XTX)−1XTy = Py, (5)

and ε̂ is indeed orthogonal to ŷ because by definition P2 = P:

ŷT (y − ŷ) = (Py)T (y −Py) =�
��yPy −����yPPy = 0. (6)
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Definition and Notations

Estimation: Least Squares, a Summary

1. Estimate the regression coefficients:

β̂ = (XTX)−1XTy. (7)

2. Estimate the fitted values using the regression coefficients:

ŷ = Xβ̂. (8)

3. Estimate the residuals and their variance:

ε̂ = y − ŷ and σ2
ε =

1

n
ε̂T ε̂ =

1

n

n∑
i=1

ε̂2i (9)

Note that no distributional assumptions are involved, with the exception of the
conditions on the εi, and thus this still is a nonparametric approach.
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Definition and Notations

Estimation: Maximum Likelihood

If we assume that errors follow a normal distribution, that is
εi ∼ N(0, σ2ε) and COV(εi, εj) = 0, we have that the errors are now
independent and identically distributed (iid). The likelihood for the
model is

L(β, σ2
ε ;y,X) =

1

(2πσ2
ε)

n
2

exp

− 1

2σ2
ε

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2


=

1

(2π)
n
2 |Σ| 12

exp

{
−1

2
(y −Xβ)T Σ−1(y −Xβ)

}
(10)

where Σ is the covariance matrix of the errors

Σ = σ2
εIn =


σ2
ε 0 · · · 0

0 σ2
ε · · · 0

...
...

. . .
...

0 0 · · · σ2
ε

 . (11)
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Definition and Notations

Estimation: Maximum Likelihood and Least Squares

Since |Σ| = (σ2ε)
n and Σ−1 = 1

σ2
ε
In, the log-likelihood has the form

l(β, σ2
ε ;y,X) ∝ −n

2
log σ2

ε −
1

2σ2
ε

(y −Xβ)T (y −Xβ), (12)

so maximising it to compute β̂ gives the same estimates as ordinary
least squares:

argmax
β

l(β, σ2
ε ;y,X) = argmin

β
(y −Xβ)T (y −Xβ). (13)

However, the estimate of the residual variance σ2ε is

σ̂2
ε =

1

n− p− 1
ε̂T ε̂ 6= 1

n
ε̂T ε̂, (14)

with the squared residuals divided by the sample size minus the number
of regression coefficients plus the intercept.
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Definition and Notations

Estimation: Why the Estimates of β Are the Same?

The only constraints set by ordinary least squares are E(εi) = 0 and
VAR(εi) = σ2ε . The maximum entropy distribution, which is the
distribution that maximises the expected likelihood under these
constraints, is the normal distribution. In other words, if the only
information we have is E(εi) = 0 and VAR(εi) = σ2ε , the distribution
that on average has the highest likelihood is the normal distribution.

And among normal distributions, that with the highest likelihood
minimises the sum of the squared residuals (i.e. nσ2ε) through the

choice of β̂. Which is the same as estimating least squares:

argmax
β

l(β, σ2
ε ;y,X) = argmin

β
(y −Xβ)T (y −Xβ). (15)

This idea is sometimes expressed saying that normal distribution is
isoperimetric with the L2 (aka Euclidean) norm, e.g. points having the
same L2 distance from the expectation have the same likelihood.
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Definition and Notations

Estimation: Why the Estimate of σ2
ε Is Not?

Now that we a completely specified distribution for the errors, we can
compute the (exact) distribution of β̂, which is normal with

E(β̂) = E((XTX)−1XTy) = E(�����
(XTX)−1���XTXβ) = β (16)

VAR(β̂) = VAR((XTX)−1XTy) = σ2
ε(XTX)−1 (17)

and the (exact) distribution of σ̂2ε , which is χ2 because ε2i ∼ σχ2
1. The

estimator we obtained from the ordinary least squares is biased so we use

σ̂2
ε =

1

n− p− 1
ε̂T ε̂ ⇒ (n− p− 1)

σ̂2
ε

σ2
ε

∼ χ2
n−p−1 (18)

in which the degrees of freedom are reduced by the presence of the
regressors and the intercept as estimated parameters in the model.
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Definition and Notations

Optimality of Least Squares and Maximum Likelihood

The Gauss-Markov theorem tells us that if we assume E(εi) = 0
VAR(εi) = σ2ε and COV(εi, εj) = 0, the best linear unbiased estimator
(BLUE) of β is that we obtain from ordinary least squares (OLS)
estimator. In other words, it has the lowest VAR(β̂), as compared to
other unbiased linear estimates.

Compared to ordinary least square, the advantage of using the
maximum likelihood approach is that we can make use of many
parametric tests that have simple expressions and simple reference
distributions as opposed advanced computational simulations.
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Definition and Notations

Modelling Workflow: From the Data to Inference

0. Data Preprocessing: check whether the data can be modelled with
a linear model, and whether a the classic estimators are sufficient or
more advanced ones are needed due to missing values, non-numeric
response, correlated or heteroscedastic observations, etc.

1. Model Selection: decide which variables to use as regressors for the
response of interest, and whether to transform them and/or the
response to make relationships linear.

2. Model Estimation: estimate the parameters of the modes.

3. Model Validation: check that the assumptions of the model are
met, check that the model fit the data well and check whether the
model predicts the data well (you can’t have both so which is more
important depends on the goals of the analysis).

4. Inference: use the model to answer relevant questions, either
through closed form inference or (more often) simulation.
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Simple and Multiple Linear

Regression
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Simple and Multiple Linear Regression

The Simplest Regression Model

A simple linear regression has just a single regressor,

yi = β0 + xi1βi + εi or y = β0 + x1β1 + ε. (19)

The value estimated by the model for yi, called the fitted value and
usually denoted ŷi, is

E(yi) = E(β0 + xi1β1 + εi) = β0 + xi1β1 +���E(εi) = β0 + xi1β1; (20)

and the corresponding estimate for the error, the residual ε̂i, is

ε̂i = yi − E(yi) = yi − ŷi. (21)

Along with the regression coefficients, they are the key quantities in the
estimation and interpretation of the linear model.
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Simple and Multiple Linear Regression

Example: the Marks Data Set

The marks data set from the classic Mardia, Kent & Bigby’s book on
“Multivariate Analysis” (1979) consists of the exam scores of 88
students across 5 different topics: mechanics (MECH), vectors (VECT),
algebra (ALG), analysis (ANL) and statistics (STAT). The scores are on a
0 to 100 scale.

> marks = read.table("marks.txt", header = TRUE)

> str(marks)

’data.frame’: 88 obs. of 5 variables:

$ MECH: num 77 63 75 55 63 53 51 59 62 64 ...

$ VECT: num 82 78 73 72 63 61 67 70 60 72 ...

$ ALG : num 67 80 71 63 65 72 65 68 58 60 ...

$ ANL : num 67 70 66 70 70 64 65 62 62 62 ...

$ STAT: num 81 81 81 68 63 73 68 56 70 45 ...
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Simple and Multiple Linear Regression

Fitting a Simple Linear Regression

The lm() function is the standard tool to fit a linear regression model in
R. It takes a formula of the form y ∼ x1 (the intercept is implicitly
included as well) and a data set including the variables in the formula.

> m = lm(STAT ~ ALG, data = marks)

> m

Call:

lm(formula = STAT ~ ALG, data = marks)

Coefficients:

(Intercept) ALG

-12.32 1.08

The m objects contains many quantities that are of use in subsequent
analyses, but it prints just the model formula and the regression
coefficients.
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Simple and Multiple Linear Regression

The Regression Line

ALG

S
TA

T

10

30

50

70

90

10 30 50 70 90

observed
fitted

Marco Scutari University of Oxford



Simple and Multiple Linear Regression

The Intercept and the Regression Coefficient

In the case of a simple linear regression model, the estimator for the
intercept β0 is the mean of the yi adjusted for the mean of the xi,

β̂0 =
1

n

n∑
i=1

yi − β̂1
1

n

n∑
i=1

xi = ȳ − β̂1x̄ (22)

and the estimator for the regression coefficient β1 is

β̂1 =
COV(x1,y)

VAR(x1)
(23)

as the general expression in (4) simplifies due to the presence of a single
explanatory variable. Note that

β̂1 ∝ COR(x1,y) and

β̂1 = COR(x1,y) if VAR(x1) = VAR(y) = 1. (24)
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Simple and Multiple Linear Regression

Regression Coefficients as Correlations

As a result of (24) we have that

β1 = 0 if and only if COV(x1,y) = 0 (25)

since β1 = E(β̂1) ∝ COV(x1,y). So a regression coefficient is a
function of the correlation between the response and the explanatory
variable; and testing for zero correlation between x1 and y is equivalent
to testing whether β̂1 is equal to zero.

The significance of a regression coefficient is often tested using the
asymptotic (normal) distribution of the maximum likelihood estimator
with mean from (16) and variance from (17). But we can also use the
exact (Student’s) t test and asymptotic (normal) Fisher’s Z test for
correlation among others.
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Simple and Multiple Linear Regression

Regression Coefficients as Slope

ALG
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+30
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A second, geometric
interpretation of a regression
coefficient is that of the
slope of the regression line.
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Simple and Multiple Linear Regression

Key Quantities Pre-Computed by lm()

• fitted values ŷi

> fitted(m)

1 2 3 4 5 6

60.0096 74.0443 64.3279 55.6912 57.8504 65.4075 [...]

• residuals ε̂i

> resid(m)

1 2 3 4 5 6

20.9903 6.9556 16.6720 12.3087 5.1495 7.5924 [...]

• intercept and regression coefficients β̂

> coef(m)

(Intercept) ALG

-12.32289 1.07959
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Simple and Multiple Linear Regression

Model Information from summary(m)

> summary(m)

Call:

lm(formula = STAT ~ ALG, data = marks)

Residuals:

Min 1Q Median 3Q Max

-22.850 -8.741 -1.162 7.720 39.343

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -12.3229 6.7633 -1.822 0.0719 .

ALG 1.0796 0.1308 8.251 1.64e-12 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.97 on 86 degrees of freedom

Multiple R-squared: 0.4419, Adjusted R-squared: 0.4354

F-statistic: 68.09 on 1 and 86 DF, p-value: 1.638e-12
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Simple and Multiple Linear Regression

summary(m): Residuals

First of all, summary() prints a few key quantiles of the residuals.

Residuals:

Min 1Q Median 3Q Max

-22.850 -8.741 -1.162 7.720 39.343

They are assumed to be symmetric and centred at zero, so the median
should be small and the 1st and 3rd quartiles should be symmetric.
Maximum and minimum are usually not because it takes just a single
misbehaving observation (i.e an outlier) to make them very different.
The mean of the residuals is indeed very close to zero

> mean(resid(m))

[1] -2.317458e-16

and the maximum likelihood estimate of σ̂2ε (χ2
86) is:

> var(resid(m)) * (nrow(marks) - 1) / (nrow(marks) - 2)

[1] 168.1175

The residual standard error is the corresponding standard deviation.
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Simple and Multiple Linear Regression

plot(m): Graphical Diagnostics for the Residuals

plot(m) produces the most widely used graphical diagnostics to check
whether the residuals violate the assumptions of the model.

• Residuals vs fitted values: we know from least squares that
residuals and fitted values are orthogonal, so we should not be able
to see any trend in the plot; and the range should remain constant
because the residuals are homoscedastic.

• Quantile-quantile plot: the residuals are assumed to be normal, so
we can check them against the theoretical quantiles.

• Cook’s distance plot: Cook’s distance measures the influence of
each yi on the model (the leverage) through the predicted ŷ∗i
obtained by dropping yi:

Di =

n∑
j=1

(ŷj − ŷ∗j )2

(1 + p)σ̂2ε
. (26)
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Simple and Multiple Linear Regression

Residuals vs Fitted Values (Good)
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lm(STAT ~ ALG)

Residuals vs Fitted

28

34
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There is no visible trend, the residuals
are a shapeless cloud of points that is
approximately symmetric around zero.
The most extreme are labelled with the
row number of the corresponding
observation in X. If we do not consider
those points, the range of the residuals
is [−20, 20] which is indeed symmetric
around zero.

The red line is the mean of the
residuals at each point of the x axis; it
only departs from zero at the far ends.
That happens because there are few
points with extreme fitted values, so
the estimates of the corresponding
mean residuals is very noisy.
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Simple and Multiple Linear Regression

More On Cooks’ Distance

Despite appearances, computing Di does not in fact require to estimate
one linear model for each observation, which would be computationally
demanding. It can be rewritten as

Di =

n∑
j=1

(ŷj − ŷ∗j )2

(1 + p)σ̂2ε
=

ε̂2i
(p+ 1)σ̂2ε

· hii
(1− hii)2

(27)

where hii is the (i, i) element of H = X(XTX)−1XT . In this context it
is called the hat matrix, but it’s just the projection matrix P from (5) in
least squares definition and it’s available from the original model fit.
Plus,

VAR(ε̂) = σ̂2ε(In −H) (28)

which means that VAR(ε̂i) = σ̂2ε(1− hii), another useful quantity to
check for homoscedasticity.
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Simple and Multiple Linear Regression

Quantile-Quantile Plot (Good)
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lm(STAT ~ ALG)
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The standardised quantiles of the
residuals are on the y axis and the
theoretical quantiles of a standard
normal distribution are on the x axis.

Almost all the points are close to the
diagonal of the plot (the grey dotted
line), and there is no visible pattern.
Only the two most extreme residuals at
each end do not match the
corresponding quantiles very well,
which is expected and perfectly normal.
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Simple and Multiple Linear Regression

Standardised Residuals vs Fitted Values (Good)
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lm(STAT ~ ALG)
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This plot is also called a spread-level
plot.

The absolute values of the residuals
(standardised with

√
VAR(ε̂)) are

useful to check whether there are
patterns that were not visible in the
previous plots.

The red line is the mean of the
√
ε̂i

around each point of the x axis. A flat,
horizontal suggests the residuals are
homoscedastic; any trend suggests that
residuals are heteroschedastic.
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Simple and Multiple Linear Regression

Residuals vs Leverage (Good)
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Plotting standardised residuals against
Cook’s distance is useful to check
which residuals may be problematic. A
large standardised residual is not
problematic per se; and even small
residuals can have high leverage.

The dashed red lines are thresholds for
Cook’s distance; for residuals beyond
the Di = 1 threshold there is strong
evidence the corresponding observation
is an outlier. Residuals close to or
beyond the Di = 0.5 should be
investigated as well.
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Simple and Multiple Linear Regression

Outliers: High Leverage (Bad)
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outlier with high leverage

observed
fitted (with outlier)
fitted (without outlier)

The green line is the model fitted from
the marks data; the red line is the
model fitted from the marks data plus
an outlier (the blue triangle). The blue
dots are the observations in the original
marks data.

The outlier has high leverage because it
has both an extreme ALG value and an
extreme STAT value – both the
response and the explanatory variable
have values that are far from the
respective averages.
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Simple and Multiple Linear Regression

Outliers: Small Leverage (Not as Bad)
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fitted (without outlier)

On the other hand, in this case only
STAT has an extreme value. So while it
is still an outlier, it does have little
leverage because ALG has a value that
is near the centre of the range of the
observed values.

Marco Scutari University of Oxford



Simple and Multiple Linear Regression

Statistical Tests Used as Diagnostics for the Residuals

There are many possible ways for residuals to violate the assumptions
required by a linear model; and it is impossible to cover all of them
effectively by testing. However, two approaches are commonly suggested
in classic literature.

• Testing for normality with Shapiro-Wilk’s test or any other
distribution test such as Anderson-Darling or Jarque-Bera.
> shapiro.test(resid(m)) > library(nortest)

> ad.test(resid(m))

Shapiro-Wilk normality test

Anderson-Darling normality test

data: resid(m)

W = 0.9723, p-value = 0.05602 data: resid(m)

A = 0.7442, p-value = 0.05068

• Testing for correlation among the residuals, for example
autocorrelation patterns similar to those in time series with the
Durbin-Watson test.
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Simple and Multiple Linear Regression

Departures from Normality: Heavy Tails (Bad)

Quantile−Quantile Plot
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With heavy tails we have symmetric departures on the tails of the
quantile-quantile plot.
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Departures from Normality: Skewness (Bad)

Quantile−Quantile Plot
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With skewness we have asymmetric departures on the tails of the
quantile-quantile plot: up-and-left if the right tail is too heavy, down-and-right

if the left tail is too heavy.
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Why Graphical Diagnostics are Important

Examining graphical diagnostics for a linear model is important and
complements the use of numeric diagnostics. In other words:

• some problems are easier to spot in a diagnostic plot;

• some problems are better assessed with numeric indicators.

A classic example of this fact is known as Anscombe’s Quartet, a set of
four simple regression models that have the same regression coefficients,
residual standard error and R2. However, only the first really fits the
assumptions, the other are pathological cases that are apparent from
even the simplest graphical diagnostics.
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Anscombe’s Quartet
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Anscombe, FJ (1973) Graphs in statistical analysis. American Statistician, 27:17–21.
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summary(m): Regression Coefficients

summary() then prints the regression coefficients and their significance.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -12.3229 6.7633 -1.822 0.0719 .

ALG 1.0796 0.1308 8.251 1.64e-12 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

For each coefficient (including the intercept), summary() reports the
p-value for H0 : βi = 0 vs H1 : βi 6= 0 computed with the (asymptotic
normal or tn−2) Wald test:

> 2 * pt(abs(-12.3229 / 6.7633), df = nrow(marks) - 2, lower.tail = FALSE)

[1] 0.07188737

Typically, we are not much interested in the significance of the intercept
as much as in that of the regression coefficients.
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Better Ways of Testing for the Significance of a Regressor

The Wald test is notoriously unreliable, so better options should be used
in most cases. If ρ = COR(y,x1), possible choices are:

• the loglikelihood ratio test

D = −n log(1− ρ2) ∼ χ2
1 (asymptotic); (29)

• the t test for correlation

t = ρ

√
n− 2

1− ρ2
∼ tn−2 (exact); (30)

• Fisher’s Z test

Z = log

(
1 + ρ

1− ρ

) √
n− 3

2
∼ N(0, 1) (asymptotic). (31)
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Better Ways of Testing for the Significance of a Regressor

> -2 * (logLik(lm(STAT ~ 1, data = marks)) -

+ logLik(lm(STAT ~ ALG, data = marks)))

[1] 51.31894

> rho = cor(marks$STAT, marks$ALG)

> - nrow(marks) * log(1 - rho^2)

[1] 51.31894

> pchisq(51.31894, df = 1, lower.tail = FALSE)

[1] 7.851e-13 # loglikelihood ratio test

> cor.test(marks$STAT, marks$ALG) # exact t test

Pearson’s product-moment correlation

data: marks$STAT and marks$ALG

t = 8.252, df = 86, p-value = 1.638e-12

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5289 0.7673

> (log(1 + rho) - log(1 - rho)) * sqrt(nrow(marks) - 3)/2

[1] 7.387

> 2 * pnorm(7.387, lower.tail = FALSE)

[1] 1.502e-13 # Fisher’s Z test
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summary(m): Goodness of Fit

Finally summary() prints three indicators of goodness of fit, e.g. how
well the estimated model fits the data.

Residual standard error: 12.97 on 86 degrees of freedom

Multiple R-squared: 0.4419, Adjusted R-squared: 0.4354

F-statistic: 68.09 on 1 and 86 DF, p-value: 1.638e-12

They are:

• the residual standard error, e.g.
√
σ̂2ε ;

• the R2 coefficient, also known as coefficient of determination or
multiple correlation coefficients, e.g. R2 = COR(y, ŷ)2;

• the F test for the fitted model against the null model including
only the intercept.
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The R2 Coefficient

The R2 coefficient can equivalently be estimated as the proportion of
variability of y explained by the model, that is,

R2 =
VAR(ŷ)

VAR(y)
=

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

∈ [0, 1]. (32)

Clearly, the higher the R2 the better the model fits the data. It’s easy to
show it is bound in [0, 1]:

n∑
i=1

(yi − ȳ)2︸ ︷︷ ︸
total squares

=

n∑
i=1

(yi − ŷi + ŷi − ȳ)2 =

=

n∑
i=1

(yi − ŷi)2︸ ︷︷ ︸
residual squares

+

n∑
i=1

(ŷi − ȳ)2︸ ︷︷ ︸
regression squares

>
n∑
i=1

(ŷi − ȳ)2. (33)
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The F Test for Nested Simple Linear Models

The F test is an overall goodness-of-fit test comparing the fitted model
M1 with a (nested) barebone model M0 containing only the intercept,

H0 : model is M0,y = β0

H1 : model is M1,y = β0 + x1β1. (34)

The test statistic is

F =

∑n
i=1(ŷi − ȳ)2

σ̂2ε
∼ F1,n−2. (35)

Rejecting the null hypothesis suggests that the response variable
depends on x1; and the p-value of this test will be the same as the Wald
test for β1.
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A General Linear Regression Model

A multiple linear regression has p > 1 explanatory variables,

yi = β0 + xi1β1 + . . .+ xipβp or y = Xβ. (36)

As we saw in the first lesson, this means that

ŷi = β0 +

p∑
j=i

xijβj and ε̂i = yi − β0 −
p∑
j=i

xijβj . (37)

We can fit the model with lm() as before, including all the topics in the
marks data in the regression.

> m2 = lm(STAT ~ ALG + ANL + MECH + VECT, data = marks)

> m2

Call:

lm(formula = STAT ~ ALG + ANL + MECH + VECT, data = marks)

Coefficients:

(Intercept) ALG ANL MECH VECT

-11.37822 0.72944 0.31293 0.02217 0.02574
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Model Information from summary(m2)

> summary(m2)

Call:

lm(formula = STAT ~ ALG + ANL + MECH + VECT, data = marks)

Residuals:

Min 1Q Median 3Q Max

-21.688 -9.925 -1.905 8.764 36.538

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.37822 6.98174 -1.630 0.106952

ALG 0.72944 0.20961 3.480 0.000802 ***

ANL 0.31293 0.13146 2.380 0.019581 *

MECH 0.02217 0.09895 0.224 0.823265

VECT 0.02574 0.13953 0.184 0.854092

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.75 on 83 degrees of freedom

Multiple R-squared: 0.4793, Adjusted R-squared: 0.4542

F-statistic: 19.1 on 4 and 83 DF, p-value: 3.612e-11
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Significance of the Regression Coefficients

Now that there are 4 topics as explanatory variables, summary() reports
theirs Wald test statistics and the corresponding (tn−p) p-values.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.37822 6.98174 -1.630 0.106952

ALG 0.72944 0.20961 3.480 0.000802 ***

ANL 0.31293 0.13146 2.380 0.019581 *

MECH 0.02217 0.09895 0.224 0.823265

VECT 0.02574 0.13953 0.184 0.854092

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The only tests that are significant are those for ALG (p = 0.0008) and
ANL (p = 0.0195). However, it is important to note that the tests are
not independent, because from (17) we know that VAR(β̂) is not
diagonal.
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Regression Coefficients and Multiple Testing Adjustment

Another point to consider is that performing multiple tests requires
adjusting the significance threshold; otherwise some null hypotheses will
be rejected just by chance due to type I errors. The easiest way of doing
that is Bonferroni correction: dividing the threshold by (or multiplying
the p-values by) the number of tests.

> p.adjust(c(ALG = 0.000802, ANL = 0.019581, MECH = 0.823265,

+ VECT = 0.854092), method = "bonferroni")

ALG ANL MECH VECT

0.003208 0.078324 1.000000 1.000000

After doing that, only ALG still has a p-value below 0.05. A state of the
art method like FDR is less harsh, and flags ANL as borderline significant
with a corrected p-value of ' 0.04.

> p.adjust(c(ALG = 0.000802, ANL = 0.019581, MECH = 0.823265,

+ VECT = 0.854092), method = "fdr")

ALG ANL MECH VECT

0.003208 0.039162 0.854092 0.854092
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Testing Correlations in a Multiple Regression

In the case of simple linear regression we saw in (29), (30) and (31) that
a regression coefficient is equal to zero if and only if the corresponding
correlation is zero. This is still true for multiple regression, using partial
correlation coefficients conditional on the other regressors: βi = 0 if and
only if ρ = COR(y,xi | all xj , j 6= i).

• The loglikelihood ratio test

D = −n log(1− ρ2) ∼ χ2
1 (asymptotic); (38)

• the t test for correlation

t = ρ

√
n− p− 1

1− ρ2
∼ tn−p−1 (exact); (39)

• Fisher’s Z test

Z = log

(
1 + ρ

1− ρ

) √
n− p− 2

2
∼ N(0, 1) (asymptotic). (40)
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Regression Coefficients and Collinearity

Collinearity (the presence of correlated explanatory variables) can have a
large impact on the values and the precision of the regression
coefficients.

• In real-world problems, explanatory variables are rarely orthogonal
and they are often linked by correlation patterns of varying
intensity. Some collinearity is pretty common, but it does not
necessarily bias (much) the regression coefficients even when it
increases their variance.

• Multiple testing adjustment assumes the tests for the regression
coefficients are independent, so it may not be valid. FDR has been
proved to hold for weakly and moderately correlated tests, though.

It is important to note that apparent collinearity may be just an artefact
due to the presence of outliers; and in that case it can be solved by
identifying and removing those outliers.
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Collinearity: A Geometric Interpretation
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The blue arrow is β1 (for the data) and

β̂1 (for the model); the red arrow is β2
(for the data) and β̂2 (for the model).

If x1 is orthogonal to x2, β1 and β2 are
correctly estimated; if they are
collinear, one of the regression
coefficients (β̂2) may be inflated at the

expense of the other (β̂1). They are

both likely to have large VAR(β̂1) and

VAR(β̂2).

In other words, x1 and x2 share some
information about y, as evidenced by
the orthogonal projection (dashed blue
line), and that may all get attributed to
one the variables.
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Collinearity: from Partial Correlation Coefficients

If x1 and x2 are orthogonal, then

β̂1 ∝ COR(y,x1 | x2) = COR(y,x1) (41)

β̂2 ∝ COR(y,x2 | x1) = COR(y,x2) (42)

but if they are not

COR(y,x1 | x2) =
COR(y,x1)− COR(x1,x2) COR(y,x2)√

1− COR(x1,x2)2
√

1− COR(y,x2)2
(43)

COR(y,x2 | x1) =
COR(y,x2)− COR(x1,x2) COR(y,x1)√

1− COR(x1,x2)2
√

1− COR(y,x1)2
(44)

which means that β̂1 and β̂2 may be biased upwards or downwards
depending on the sign and the magnitude of the correlations.
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Collinearity: A Simple Simulation

> library(MASS)

> # a three-dimensional multivariate Gaussian.

> mu = rep(0, 3)

> R = matrix(c(1, 0.6, 0.5,

+ 0.6, 1, 0,

+ 0.5, 0, 1),

+ ncol = 3, dimnames = list(c("y", "x1", "x2"), c("y", "x1", "x2")))

> # gradually increase the correlation between the explanatory variables.

> for (rho in c(seq(from = 0, to = 0.95, by = 0.05), 0.99)) {

+

+ # update the correlation matrix and generate the data.

+ R[2, 3] = R[3, 2] = rho

+ data = as.data.frame(mvrnorm(10000, mu, R))

+ # fit the linear model.

+ beta = coef(lm(y ~ x1 + x2, data = data))

+ # print the coefficients.

+ print(beta)

+

+ }#FOR
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Collinearity: A Simple Simulation
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β̂1

β̂2 The intercept is often largely
unaffected by collinearity.

When rho is zero, β̂1 = 0.6, β̂2 = 0.5
because they coincide with the
marginal correlations specified in the
correlation matrix R.

As rho increases, both β̂1 and β̂2 start
to drift apart, and they diverge in
opposite directions as rho approaches
1.
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Collinearity: the Variance Inflation Factor

One way to diagnose collinearity is to factorise X and investigate its
eigenvalues or singular values. Another way is to compute the variance
inflation factor (VIF) for each variable xi as follows:

1. fit the regression

xi = γ0 + γ1x1 + . . .+ γi−1xi−1 + γi+1xi+1 + . . .+ γpxp + ε; (45)

2. compute VIF(β̂i) = 1/(1−R2
i ) where R2

i is the R2 coefficient of
the model in (45);

3. if VIF(β̂i) > 10 then collinearity is considered to be high.

For a variable xi that is perfectly orthogonal to all other xj , R
2
i = 0 and

then VIF(β̂i) = 1. Otherwise, R2
i increases and VIF(β̂i)→∞ as xi is

increasingly linearly related to the other xj .
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Collinearity: VIFs for the Simulation and the marks Data

For the marks data, we have:

> vif(lm(m2, data = marks))

MECH VECT ALG ANL

1.602659 1.801461 2.655396 2.038807

This means, for example, that
√

VAR(β̂VECT) is inflated by a factor of

≈
√

1.8 ≈ 1.34, which in turn means that any confidence interval for
β̂VECT) will be 1.34 too wide.

In the simulation,

VIF(β̂1) = VIF(β̂2) ≈ 1 for rho equal to 0;

VIF(β̂1) = VIF(β̂2) ≈ 1.2 for rho equal to 0.40;

VIF(β̂1) = VIF(β̂2) ≈ 2 for rho equal to 0.70;

VIF(β̂1) = VIF(β̂2) ≈ 50 for rho equal to 0.99.
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Comparing Nested Models

A better alternative to test multiple coefficients at the same time, i.e.

H0 : βi1 = . . . = βik = 0 vs H1 : βi1 , . . . , βik 6= 0 (46)

is to perform a single overall goodness-of-fit test using the two nested
models M0 (with the coefficients set to zero) and M1 (with the
estimated coefficients). The likelihood ratio test coincides with the
general form of the F test we saw in (35):

F =

(
RSS(M0)−RSS(M1)

pM1
−pM0

)
(
RSS(M1)
n−pM1

) ∼ FpM1
−pM0

,n−pM1
−1 (exact) (47)

where pM1 and pM0 are the number of regressors of M1 and M0, and
RSS(M1) and RSS(M0) are the corresponding residuals’ variances.
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Special Explanatory Variables: Categorical Variables

If an explanatory variable is a categorical variable (as opposed to a
numerical variable), we are primarily interested in the mean response for
each possible value (level) of the variable.
Say, for example, that the students assessed in the marks data belong
to two different classes (say A and B). Then we would like to estimate

yi = β0A + xi1β1 + . . .+ xipβp for group A (48)

yi = β0B + xi1β1 + . . .+ xipβp for group B (49)

but to keep the original intercept β0, we choose group A as a baseline
(β0 = β0A) and we introduce a dummy variable to express the contrast
(βB = β0B − β0A) between group B and group A:

yi = β0 + 1l(i ∈ B)βB + xi1β1 + . . .+ xipβp (50)

where 1l(i ∈ B) is 1 if the ith student belongs to group B and 0 if he
belongs to group A.
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Categorical Variables and Contrasts

We can create factor variables with factor, and the level for each student is a
character string which in this case one of the two levels A and B.

> GROUP = factor(c(rep("A", 44), "B", rep("A", 7), rep("B", 36)))

> levels(GROUP)

[1] "A" "B"

The baseline is always the first level; since we have only two, the
contr.treatment() function creates just one dummy variable: 1l(i ∈ B).

> contr.treatment(levels(GROUP))

B

A 0

B 1

If we had three levels A, B and C, we would have both 1l(i ∈ B) and 1l(i ∈ C).

> contr.treatment(c("A", "B", "C"))

B C

A 0 0

B 1 0

C 0 1
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Categorical Variables in lm()

The lm() function recognises whether a variable is categorical and
automatically takes care of generating the dummy variables for
contrasts.

> lm(STAT ~ GROUP + ALG + ANL + MECH + VECT, data = marks)

Call:

lm(formula = STAT ~ GROUP + ALG + ANL + MECH + VECT, data = marks)

Coefficients:

(Intercept) GROUPB ALG ANL MECH VECT

-5.096880 -2.978552 0.705488 0.260411 0.021026 -0.000371

Note that this use of the dummy variables is just one of many possible
choices; alternatives exist that make interpretation easier in specific
settings. They all generate sets of orthogonal dummy variables, and the
sum of the dummy variables is the same for all observations.
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Categorical Variables in summary()

> summary(lm(STAT ~ GROUP + ALG + ANL + MECH + VECT, data = marks))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.096880 12.327967 -0.41 0.6804

GROUPB -2.978552 4.809454 -0.62 0.5374

ALG 0.705488 0.213922 3.30 0.0014 **

ANL 0.260411 0.156844 1.66 0.1007

MECH 0.021026 0.099333 0.21 0.8329

VECT -0.000371 0.146258 0.00 0.9980

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.8 on 82 degrees of freedom

Multiple R-squared: 0.482, Adjusted R-squared: 0.45

F-statistic: 15.2 on 5 and 82 DF, p-value: 1.42e-10
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Categorical Variables in summary(): Interpretation

• After including GROUP in the model, the regression coefficients of
the other explanatory variables change. Recall that maximum
likelihood estimates are correlated as VAR(β̂) = σ2ε(X

TX)−1, so
adding or removing terms from the model means all β has to be
recomputed.

• Even if the new explanatory variable is perfectly orthogonal to all
other variables (which never happens in practice), the coefficients
still change because σ̂2ε will be smaller.

• The t test statistic for the contrast dummy variables is not
indicative of whether the original categorical variable is significant,
even when it has only two levels. It is preferable to use a technique
called analysis of variance (ANOVA), which we will see later on.
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Special Explanatory Variables: Polynomial Terms

Another interesting kind of explanatory variable are polynomial terms.

yi = β0 + xi1β1 + xi2β2 + . . .+ xipβp + εi (51)

A linear model is linear in the parameters, not in the explanatory
variables, so we may find that the response variable is best explained by
including higher powers of some variable(s), say x1:

yi = β0 + xi1β1 + x2i1β1.2 + xi2β2 + . . .+ xipβp + εi (52)

Other transforms can be included in principle, but polynomial terms are
by far the most common choice along with log(x1).
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Polynomial Terms in lm(), the Wrong Way

> summary(lm(STAT ~ ALG + I(ALG^2) + ANL + MECH + VECT, data = marks))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.844781 17.311003 1.377 0.1721

ALG -0.726050 0.688595 -1.054 0.2948

I(ALG^2) 0.015226 0.006877 2.214 0.0296 *

ANL 0.303275 0.128544 2.359 0.0207 *

MECH 0.029088 0.096751 0.301 0.7644

VECT -0.015349 0.137618 -0.112 0.9115

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.46 on 82 degrees of freedom

Multiple R-squared: 0.5087, Adjusted R-squared: 0.4787

F-statistic: 16.98 on 5 and 82 DF, p-value: 1.719e-11

The I() function is used to make it clear to lm() that the transformation is
applied to the ALG variable and is not part of the syntax of the model formula.
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Polynomial Terms in lm(), the Right Way

The problem with simply including a polynomial terms like ALG^2 is
two-fold:

• terms will be correlated, which is may make the estimation of the
regression coefficients problematic; and

• because of that it is difficult to test each term for significance,
which is needed to assess the degree of the polynomial.

We see in the output of summary that ALG is not significant after
adding ALG^2, exactly because COR(ALG, ALGˆ2) = 0.98.

A better way is to use contrasts again, because they are orthogonal; the
function that creates them for polynomials is contr.poly().

> contr.poly(3)

.L .Q

[1,] -7.071068e-01 0.4082483

[2,] -7.850462e-17 -0.8164966

[3,] 7.071068e-01 0.4082483

Marco Scutari University of Oxford



Multiple Linear Regression

Polynomial Terms in lm() with poly()

> summary(lm(STAT ~ poly(ALG, 2) + ANL + MECH + VECT, data = marks))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.79282 8.72183 3.187 0.002037 **

poly(ALG, 2)1 75.69314 20.35958 3.718 0.000366 ***

poly(ALG, 2)2 27.86824 12.58757 2.214 0.029609 *

ANL 0.30327 0.12854 2.359 0.020687 *

MECH 0.02909 0.09675 0.301 0.764444

VECT -0.01535 0.13762 -0.112 0.911465

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.46 on 82 degrees of freedom

Multiple R-squared: 0.5087, Adjusted R-squared: 0.4787

F-statistic: 16.98 on 5 and 82 DF, p-value: 1.719e-11

The poly() function calls contr.poly() and automatically sets up the
model; p-values are now closer to those in the original model.
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Multiple Linear Regression

Special Explanatory Variables: Interaction Terms

A third type of explanatory variable that deserves special attention are
interaction terms. In all the preceding models each regression coefficient
was linked to a single explanatory variable; but there may be joint
effects are not captured by the model, just marginal (main) effects.

Therefore, we may want to add to the model a regressor whose value is
determined by two or more variables in such a way that:

• the interaction does not obscure the main effects of the underlying
variables;

• the interpretation of the interactions is clear.
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Multiple Linear Regression

Interaction between Categorical Variables

Interactions between categorical variables are modelled using contrasts
in the same way as for individual variables, but applying them to the
configurations of the levels. So, if we have students examined in two
SESSIONs S and T, an interaction with GROUP has 4 possible
configurations:

yi = β0A&S + xi1β1 + . . .+ xipβp for group A in session S (53)

yi = β0A&T + xi1β1 + . . .+ xipβp for group A in session T (54)

yi = β0B&S + xi1β1 + . . .+ xipβp for group B in session S (55)

yi = β0B&T + xi1β1 + . . .+ xipβp for group B in session T (56)

and each configuration has its own intercept. From this set equations,
we would like to have one set of contrasts for SESSION, one set for
GROUP, and a third set over {A, B} × {S, T} defined to be orthogonal to
the main effects.
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Multiple Linear Regression

Interactions and Contrasts

The model with the contrasts is:

yi = β0+ 1l(i ∈ B)βB︸ ︷︷ ︸
contrast for GROUP

+ 1l(i ∈ T)βT︸ ︷︷ ︸
contrast for SESSION

+ 1l(i ∈ B, i ∈ T)βBT︸ ︷︷ ︸
contrasts for GROUP × SESSION

+

+ xi1β1 + . . .+ xipβp. (57)

In R we code an interaction using “*” instead of “+”; main effects are
automatically included (“:” should be used to add just the interaction).

> SESSION = factor(c(rep("S", 48), rep("T", 40)))

> m3 = lm(STAT ~ GROUP * SESSION + ALG + ANL + MECH + VECT, data = marks)

> m3

[...]

Coefficients:

(Intercept) GROUPB SESSIONT ALG

-1.28725412 1.55863034 -7.58939653 0.69064381

ANL MECH VECT GROUPB:SESSIONT

0.23344081 0.00190621 0.00000938 1.14435914
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Multiple Linear Regression

Interactions and Contrasts: How Many?

The joint distribution of GROUP and SESSION has 4 parameters, which
correspond to the probabilities of the cells of the 2× 2 table over
{A, B} × {S, T}. One of these 4 parameters is fixed because they sum up
to one; this leaves 3 free. One is used by the main effect for GROUP,
another is used by the main effect for SESSION, and the remaining one
is available for the interaction.

intercept SESSION GROUP interaction

A and S 1 0 0 0
A and T 1 1 0 0
B and S 1 0 1 0
B and T 1 1 1 1

If we lay the components that go into the intercept, we can see how
they are orthogonal to each other (and how we cannot have more than
one contrast for the interaction).
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Multiple Linear Regression

Interaction between Categorical and Numerical Variables

An interaction term between a categorical and a numerical variable
introduces a different regression coefficient for each level for the
numerical variable, and a different intercept:

yi = β0A + xi1β1A + . . .+ xipβp for group A (58)

yi = β0B + xi1β1B + . . .+ xipβp for group B. (59)

In practice, we factor out the main effect of the two variables,

yi = β0 + 1l(i ∈ B)βB︸ ︷︷ ︸
contrast for GROUP

+ xi1β1︸ ︷︷ ︸
main effect for x1

+

+ xi11l(i ∈ B)β1B︸ ︷︷ ︸
interaction

+ . . .+ xipβp. (60)
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Multiple Linear Regression

Interactions, Contrasts and Coefficients

The syntax for fitting this kind of interaction is the same as in the
previous case; here we model an interaction between ALG and GROUP.

> m4 = lm(STAT ~ GROUP * ALG + ANL + MECH + VECT, data = marks)

> m4

Call:

lm(formula = STAT ~ GROUP * ALG + ANL + MECH + VECT, data = marks)

Coefficients:

(Intercept) GROUPB ALG ANL MECH VECT

-22.6283 32.5563 1.0941 0.2305 0.0153 -0.0462

GROUPB:ALG

-0.7446
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Multiple Linear Regression

Interaction between Numerical Variables

An interaction between two numerical variables is simply their product,
possibly after transforming them; as we can see below for ALG and ANL

below, we get the same result by manually including ALG, ANL and
I(ALG * ANL) in the model.

> lm(STAT ~ ALG * ANL + MECH + VECT, data = marks)

[...]

Coefficients:

(Intercept) ALG ANL MECH VECT ALG:ANL

24.90467 -0.00997 -0.46626 0.01530 -0.03967 0.01661

> lm(STAT ~ ALG + ANL + I(ALG * ANL) + MECH + VECT, data = marks)

[...]

Coefficients:

(Intercept) ALG ANL I(ALG * ANL) MECH VECT

24.90467 -0.00997 -0.46626 0.01661 0.01530 -0.03967
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of Variance
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Model Selection and the Analysis of Variance

Model Selection: Which Explanatory Variables to Include?

In previous lessons we have estimated and examined models in which the
set of explanatory variables was fixed — ALG for simple linear regression,
and all topics apart from STAT (the response) for multiple regression.

This raises two questions:

1. Do we really need all topics as explanatory variables, or will a
subset do just as well?

2. How do we pick which topics to include in the model?

Answering these questions is to perform model selection, performing
inference on multiple models to pick that which is the most effective for
the analysis.
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Model Selection and the Analysis of Variance

What Does “The Most Effective” Mean?

What model is “most effective” depends on how the model will be used
and on the goals of the analysis.

• Is the purpose of the model to provide an explanation of the
phenomenon underlying the data, possibly highlighting the role of
each explanatory variables?

• Is the purpose of the model to provide a tool to predict the value of
the response variable for future observations, using as much
information as possible as a black-box device?

In the first case we would like a model that is parsimonious, with a small
number of explanatory variables we can easily interpret but fits the data
in the sample well; in the second we focus on predictive ability at the
expense of clarity and in-sample goodness-of-fit.
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Model Selection and the Analysis of Variance

A Tradeoff: In-Sample versus Out-of-Sample

There is a tradeoff between fitting the observations in the sample well
and providing good predictions for new observations.

On the one hand, including a larger number of explanatory variables
produces ŷi that are very close to the yi — in the limit case, if we have
p = n− 1 explanatory variables, all ŷi = yi and we have the saturated
model. On the other hand, if we include fewer explanatory variables, the
model is more likely to generalise because it will be able not pick up
spurious patterns from the observed sample.

In both cases, then, we must beware of overfitting; but what counts as
overfitting depends on the purpose of the model.
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Model Selection and the Analysis of Variance

Model Selection: Which Selection Criterion?

• Statistical tests for nested models as in (46), evaluated through their
p-values using a threshold; particularly simple if each pair of models differs
by just one variable, we can use (38), (39), (40).

• Akaike Information Criterion (AIC), which approximates the expected
loglikelihood ratio between the model and the unknown “true model” for the
data:

AIC = −2 logL(β, σ2
ε ;y,X) + 2K (61)

where L(β, σ2
ε ;y,X) = n log

(∑n
i=1 ε̂

2
i /n
)

is the likelihood from (10) at its
maximum and K is p+ 1, the number of coefficients (including the
intercept).

• the Bayesian Information Criterion (BIC), which approximates the (negated)
posterior probability of the model as

BIC = −2 logL(β, σ2
ε ;y,X) + log(n)K. (62)

Both AIC and BIC should be minimised to find the optimal model.
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Model Selection and the Analysis of Variance

Comparing Selection Criteria: Pros and Cons

• Model selection through statistical tests is problematic because of
the large number of tests typically required (requiring multiple
testing correction). However, the resulting p-values are correlated
and therefore multiple testing correction is also problematic.

• AIC focuses on getting close to the “true model” for the current
data, and favours good in-sample fitted values over good
predictions; BIC on the other hand provides better predictive model
at the expense of poorer fitted values.

• Both AIC and BIC have penalties which increase with p and prevent
model selection from overfitting; using just L(β, σ2ε ;y,X) always
selects the saturated models (or all available explanatory variables).

• AIC can only be used to compare models fitted on the same
sample; and the magnitude of both AIC and BIC depends on n.
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Model Selection and the Analysis of Variance

Model Selection: Which Selection Strategy?

A large number of selection strategies have been proposed in the
literature for these criteria; the simplest is a heuristic called stepwise
selection. It is typically implemented as follows:

1. Take the empty regression model (i.e. with just the intercept) as
the starting point M of the selection process.

2. Until no improvement is possible:
2.1 Forward Selection: try to add one explanatory variable to M, re-fit

the model and estimate the selection criteria for the new model M∗.
2.2 Backward Selection: try to remove one explanatory variable from
M, re-fit the model and estimate the selection criteria for the new
model M∗.

2.3 If no model M∗ is better than M, return M.
2.4 If any model M∗ is better than M, return the model M∗ that has

the best value for the selection criterion (lowest p-value or AIC/BIC).

Note that, being an heuristic, there is no guarantee that stepwise
selection will return a globally optimal model; it can get stuck in a local
optimum.
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Model Selection and the Analysis of Variance

Stepwise Selection with AIC

> m = lm(STAT ~ 1, data = marks)

> step(m, trace = TRUE, scope = ~ ANL + ALG + VECT + MECH)

Start: AIC=502.27 Step: AIC=448.97

STAT ~ 1 STAT ~ ALG + ANL

Df Sum of Sq RSS AIC Df Sum of Sq RSS AIC

+ ALG 1 11446.6 14458 452.95 <none> 13508 448.97

+ ANL 1 9550.0 16355 463.79 + MECH 1 14.80 13494 450.87

+ VECT 1 4934.5 20970 485.67 + VECT 1 12.18 13496 450.89

+ MECH 1 3921.9 21983 489.82 - ANL 1 949.67 14458 452.95

<none> 25905 502.27 - ALG 1 2846.23 16355 463.79

Step: AIC=452.95 Call:

STAT ~ ALG lm(formula = STAT ~ ALG + ANL, data = marks)

Df Sum of Sq RSS AIC Coefficients:

+ ANL 1 949.7 13508 448.97 (Intercept) ALG ANL

<none> 14458 452.95 -11.1920 0.7653 0.3164

+ VECT 1 40.1 14418 454.70

+ MECH 1 24.3 14434 454.80

- ALG 1 11446.6 25905 502.27
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Model Selection and the Analysis of Variance

Model Selection for Prediction

When we are interested in prediction, we are more interested in the
prediction error (e.g. the residuals for observations not used in
estimating the model) than in σ2ε (e.g. the residuals for the observations
used in fitting the model).

The standard way of estimating the former is k-fold cross-validation:

1. Split the data into k random subsets (the folds) of size n/k, or as
close as possible.

2. For each subset in turn:

2.1 Fit the model using the other k − 1 subsets.
2.2 Predict the yi for the observations in the kth subset from the fitted

model, and save the (ỹi, yi) pairs.

3. Estimate the prediction error as σ̂2p = 1
n

∑n
i=1(yi − ỹi)2.

In general σ2p � σ2ε , and we can use ε̃i = yi − ỹi to estimate AIC and
BIC.
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Model Selection and the Analysis of Variance

Cross-Validation and Linear Models

Cross-validation requires the cv.glm() function, which takes models
fitted by glm() as generalised linear models. Models fitted by lm() are
just a particular case of glm models.

> library(boot)

> m0 = glm(STAT ~ ALG, data = marks)

> m1 = glm(STAT ~ ALG + ANL, data = marks)

> m2 = glm(STAT ~ ALG + ANL + MECH + VECT, data = marks)

> cv.glm(marks, m0)$delta[2]

[1] 172.0457

> cv.glm(marks, m1)$delta[2]

[1] 164.8933

> cv.glm(marks, m2)$delta[2]

[1] 171.3003

As we can see above, the model including only ALG has a higher
prediction error than that including ALG and ANL; so the latter is
preferable for prediction. The model containing all the topics overfits
the data and has a higher prediction error than the previous one.
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Model Selection and the Analysis of Variance

What do Predictions Look Like: Confidence Intervals

In the case if a yi and its x are observed, then similarly to (28) we have that

VAR(ŷi) = VAR(xβ̂) = xT VAR(β̂)x = σ2
ε(xT (XTX)−1x) = σ2

εhii. (63)

On the other hand, for a new observation we have that the variance of the
prediction ỹi is greater because it also depends on the unobserved error ε̃i:

VAR(ỹi) = VAR(x̃T β̂ + ε̃i) =

x̃T VAR(β̂)x̃ + VAR(ε̃i) = σ2
ε(1 + x̃T (XTX)−1x̃) (64)

The former can be used to construct a confidence interval, the latter a
prediction interval:

ŷi − xβ√
σ̂2
εhii

∼ tn−p−1 and
ỹi − xβ̂√

σ̂2
ε(1 + x̃T (XTX)−1x̃)

∼ tn−p−1. (65)
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Model Selection and the Analysis of Variance

Predictions, Intervals and predict()

The predict() function computes ŷi for observed data points (same as
fitted) and ỹi for new data points.

> m = lm(STAT ~ ALG + ANL, data = marks)

> predict(m, newdata = marks[1, ])

1

61.2856

> predict(m, newdata = data.frame(ALG = 100, ANL = 85))

1

92.23745

I has an interval argument which can compute both confidence and
prediction intervals.

> predict(m, newdata = data.frame(ALG = 100, ANL = 85),

+ interval = "confidence")

fit lwr upr

1 92.23745 79.16548 105.3094

> predict(m, newdata = data.frame(ALG = 100, ANL = 85),

+ interval = "prediction")

fit lwr upr

1 92.23745 63.96853 120.5064
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Model Selection and the Analysis of Variance

The Analysis of Variance

The analysis of variance (ANOVA) is a technique that analyses the
contribution of each explanatory variable to the model by iteratively
decomposing the sum of squared residuals into orthogonal (i.e.
independent) components that can be tested separately using F tests.

Consider again (33):

n∑
i=1

(yi − ȳ)2︸ ︷︷ ︸
total squares

=

n∑
i=1

(yi − ŷi)2︸ ︷︷ ︸
residual squares

+

n∑
i=1

(ŷi − ȳ)2︸ ︷︷ ︸
regression squares

.

If we have more than one explanatory variables we can further
decompose the last term into smaller sum-of-square contributions.
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Model Selection and the Analysis of Variance

ANOVA: With One Categorical Variable

The simplest example of such a decomposition is for a model with a
single categorical explanatory variable, and is known as one-way
ANOVA.
Suppose we have two groups. If we denote the intercept for the ith
observation as ȳi (was β0A or β0B in (48) and (49) when we introduced
contrasts), we can write

n∑
i=1

(ŷi − ȳ)2︸ ︷︷ ︸
regression squares

=

n∑
i=1

(ŷi − ȳi + ȳi − ȳ)2 =

=

n∑
i=1

(ŷi − ȳi)2︸ ︷︷ ︸
within group variability

+

n∑
i=1

(ȳi − ȳ)2︸ ︷︷ ︸
between group variability

(66)

and identify the component that pertains to the categorical variable.
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Model Selection and the Analysis of Variance

ANOVA Decompositions with anova()

This procedure can be generalised to any kind of variables, including
interactions, and is implemented in the anova() function.

> m = lm(STAT ~ GROUP + ALG + ANL, data = marks)

> anova(m)

Analysis of Variance Table

Response: STAT

Df Sum Sq Mean Sq F value Pr(>F)

GROUP 1 8397.8 8397.8 52.5120 1.909e-10 ***

ALG 1 3622.4 3622.4 22.6510 8.000e-06 ***

ANL 1 451.2 451.2 2.8214 0.09673 .

Residuals 84 13433.4 159.9

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Note that the variables are decomposed and tested in the order they are
specified in the model; different orderings can give different results if the
variables are not perfectly orthogonal.
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Model Selection and the Analysis of Variance

AIC, BIC and ANOVA

The difference between the AIC for two models M0 and M1 can be
written as a loglikelihood ratio test

AIC(M1)−AIC(M0) < 0

−2 logL(M1) + 2KM1 + 2 logL(M0)− 2KM0 < 0

−2 log
L(M1)

L(M0)
< −2(KM1 −KM0) (67)

where the left hand side has distribution χ2
KM1

−KM0
. M1 is preferred

over M0 only if the inequality holds; and provides an alternative
threshold for significance. Equivalently, we can define similar
relationships using BIC or the F test for ANOVA, since it is a likelihood
ratio test.
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Experimental Design

Data Collection: Observational vs Experimental

The data we use to fit linear regression (and other) models can be collected in
different ways, which have a strong influence on what kind of conclusions we
can draw from the models. Some approaches are:

• secondary analysis of already existing data;

• cross-sectional study, including descriptive sample survey;

• prospective or retrospective observational study;

• a designed experiment;

• a designed experiment with interventions.

There is quite a sharp distinction between an observational study and an
experiment. In the latter the investigator has virtual control over the whole
system, whereas in the former the investigator’s choices are limited to deciding
what to observe and to measure. As a result the conclusions that can be drawn
from an observational study are much more limited that those we can draw
from a designed experiment. In particular we cannot usually distinguish
association from cause-effect relationships from observational data.
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Experimental Design

Different Fields, Different Terminology

• Applications to Medicine
• Clinical Trials
• Case-Control Studies
• Cohort Studies
• Epidemiological Studies

• Applications to Social Sciences
• Opinion Polls
• Surveys
• Censuses
• Questionnaires

• Applications to Industry
• Taguchi Methods
• Response-Surface Designs
• Screening Designs
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Experimental Design

Key Steps in Data Collection

1. State the objective(s): which questions are to be answered?

2. Determine the “scope of inference”: what is the reference population, how
general we would like the conclusions to be?

3. Understand the system under study.

4. Decide how to measure the response(s).

5. Consider factor which could affect the response:

• design factors to be varied as treatments, or to be kept fixed.
• confounding factors to be controlled by design or by randomisation.

6. Plan the conduct of the study (time line).

7. Plan an (outline of) the statistical analysis: the alternative is to try one
analysis after the other until one gives a statistically significant result. And
then nobody can replicate your results (47 out of 53 landmark publications
in cancer research!)

8. Determine the sample size: to have sufficient tests with enough power, so
that we can tell null and alternative hypotheses apart.
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Experimental Design

Avoiding Systematic Bias

The conclusions we can draw from a designed experiment are affected by
random errors (from the random noise present in the data) and systematic
errors which introduce bias and possibly confounding.
Two ways to address and avoid the latter are:

• randomisation: some key variables in the design (typically treatment) are
assigned at random to subjects to make the effect of those variables
independent from the other variables in the model. Otherwise there may
be patterns in how those key variables are assigned that make their effects
confounded with the effects of other variables.

• retrospective adjustments: if sources of systematic errors are identified in
data that have been previously collected, we can adjust our analysis to
take those sources of errors into account. This typically done either by
re-weighting observations or by adding interaction terms.

A common source of systematic errors is sampling or selection bias, when some
members of the reference population are less likely to be included than others.
Thus the resulting sample is biased because it is not representative of the
reference population.
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Experimental Design

Block Designs to Reduce Haphazard Variation

In order to reduce the impact of random errors in estimating the effect
of the key variables in the experiment, we would like to “compare like
with like” as we do (for instance) with paired data.

A way to do that is to group similar observations into blocks that are
relatively homogeneous for some other variables measured in the
experiment. Thus we reduce known sources of variation that are not of
interest to better focus on those that are of interest.
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Experimental Design

Sampling from the Reference Population

Depending on the goals of the experiments and the structure of the reference
populations, we can choose to sample our observations in different ways.

• Simple random sampling: subjects are sampled at random with equal
probability, without replacement (in small populations) or with
replacement (in large population, where the probability of sampling the
same subject twice is negligible). Unbiased but with high variance.

• Systematic sampling: subjects are sampled with a regular pattern (e.g.
every kth widget coming out of a factory). If the order in which the
subjects are considered is random, it is still a form of random sampling.
Problematic with periodic data.

• Stratified sampling: subjects are sampled separately from disjoint subsets
(the strata) of the reference population. Strata, like blocks, are chosen to
minimise variability within each stratum and to maximise variability
between strata. The sample size is chosen separately for each stratum.

Other possibilities include cluster sampling (e.g. sampling students as whole
classes) and panel sampling (for longitudinal studies).
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Experimental Design

One-Way ANOVA

The one-way or single-factor ANOVA is the simplest experimental
design: it includes a continuous response variable and a single (discrete)
experimental factor. The latter is usually denoted as the treatment and
is assumed to be randomised. The underlying model is a simple
regression of the form

yij = µ+ τi + εij εij ∼ N(0, σ2); i = 1, . . . , k; j = 1, . . . , rk; (68)

where µ is the overall mean and τi is the ith treatment effect. As we
have seen before this model splits the sum of squares residual into
between-treatments (the variability explained by the treatment) and
within-treatment (residual variability).

In the general case, εij ∼ N(0, σ2i ) and the model above becomes a
random-effect or hierarchical linear model.
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Experimental Design

A Plasma Etching Experiment

This experiment was set up by an engineer in an integrated circuits
manufacturing plant to study the relationship between the power settings and
the etch rate of the plasma machinery used to print circuits on silicon.
The experiment has just a single factor (the 4 power settings) and 5 replicates
(for each power setting). Therefore, the design is balanced. The treatment is
randomised, because measurements are assigned a random numeric ID and
then sorted, so that the temperature is in fact randomly assigned each time.

> etch = read.table("plasma.etching.txt", header = TRUE)

> head(etch)

random power rate

1 12417 200 600

2 18369 220 725

3 21238 220 700

4 24621 160 575

5 29337 160 542

6 32318 180 565

A simple anova(lm(rate ~ power)) tells us the effect of power is highly
significant with a p-value of 7.263 · 10−10.
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Experimental Design

Etch Rate vs Power

power

et
ch

 r
at

e

550

600

650

700

160 180 200 220

Power

160 180 200 220

575 565 600 725
542 593 651 700
530 590 610 715
539 579 637 685
570 610 629 710

Average

551.2 587.4 625.4 707.0
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Experimental Design

Determining Sample Size

How do we know if we have enough replicates to have confidence in our
ability of detecting a treatment effect? The power of the corresponding
F test is

β = P(reject H0 | H0 is false)

= P(F̂ > Fα | H0 is false) (69)

where Fα is the 1− α quantile of a non-central F distribution with
degrees of freedom k, n− k and non-centrality parameter δ. Thus, for a
fixed α and k we can compute β as a function of the overall sample size
n. We can then set a minimum power level b we deem appropriate and
find the lowest n for which β(n) > b; this is called a power calculation.

For most experimental designs this is done numerically, and subjects are
then usually allocated in equal proportions to treatments for balance.
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Experimental Design

Two-Way ANOVA

Most experiments involve more than one factor of interest. Budget
permitting, the most effective way of setting up such a trial is a
(crossed) factorial design in which all configurations of the factors are
present. The simplest of such models is the two-way ANOVA model

yijk = µ+ τi + υj + (τυ)ij + εijk εijk ∼ N(0, σ2). (70)

Ideally, k > 1 replicates are available for each configuration to measure
interaction terms (for k = 1 the model is saturated).

Note that:

• the model includes an interaction term because we are interested in
both factors, and thus their interaction is also of interest;

• the treatment is randomised on both factors simultaneously;

• and that the factors are orthogonal by construction because the
design includes all the configurations of their values.
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Experimental Design

Battery Life at Extreme Temperatures

An engineer decides to test batteries with 3 plate materials at 3 temperature
levels that are consistent with the batteries’ end-use environment. 4 batteries
are tested at each combination of plate material and temperature, and all 36
tests are run in random order. Key questions are:

• What effects do material type and temperature have on the life of the
battery?

• Is there a choice of material that would give uniformly long life regardless
of temperature?

> battery = read.table("battery.life.txt", header = TRUE)

> battery$temperature =

+ factor(battery$temperature, levels = c("15F", "70F", "125F"))

> head(battery)

material temperature life

1 M1 70F 75

2 M3 125F 60

3 M1 70F 34

4 M2 70F 122

5 M1 125F 58

6 M3 15F 160
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Material and Temperature

Studying the variance components tells the engineers that both material
and temperature have significant effects, as does their interaction.

> m = lm(life ~ material * temperature, data = battery)

> anova(m)

Analysis of Variance Table

Response: life

Df Sum Sq Mean Sq F value Pr(>F)

material 2 10684 5341.9 7.9114 0.001976 **

temperature 2 39119 19559.4 28.9677 1.909e-07 ***

material:temperature 4 9614 2403.4 3.5595 0.018611 *

Residuals 27 18231 675.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Experimental Design

Which Material is Best Overall?
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No material is always better than the
others, as the lines for the materials
overlap; but the all decrease with
temperature. Batteries have longer life
at lower temperatures.

The lines in the plot are not parallel
because the interaction term is
significant, so batteries built with
different materials react differently at
various temperatures.
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Experimental Design

Are Two Material Equivalent at a Particular Temperature?

Are related question, which is often important in experimental design, is: are
two treatments equivalent? In this example, the engineer may ask: which
materials have equivalent mean battery lives at 70◦F? Tukey’s test performs a
single-step multiple comparison procedure on all pairs of treatments to
determine that.

> m70F = lm(life ~ material, data =

+ battery[battery$temperature == "70F", ])

> TukeyHSD(aov(m70F), "material")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = m70F)

$material

diff lwr upr p adj

M2-M1 62.5 22.59911 102.40089 0.0045670

M3-M1 88.5 48.59911 128.40089 0.0004209

M3-M2 26.0 -13.90089 65.90089 0.2177840 0 20 40 60 80 100 120

M
3−

M
2

M
3−

M
1

M
2−

M
1

95% family−wise confidence level

Differences in mean levels of material
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(Balanced Complete) Block Designs

Previous experimental design included only variables of interest; but in many
cases there are nuisance factors whose influence we want to remove. In other
words, we are not interested in their influence on the response but we account
for them in the model to remove their effects on treatment comparisons.

A complete randomised block design does this by having one block for each
configuration of the nuisance variable, and each block contains all the variables
of interest (treatments). The latter are randomised within each block.

In the simple case with a single treatment and a single nuisance variable, the
underlying model is

yijk = µ+ τi + βj + εijk εijk ∼ N(0, σ2). (71)

where the τi are the treatment effects and the βj are the block factors. Note
that there are no interaction terms involving both treatment and block factors,
although there may be interactions between treatments. (Blocks are defined by
the configurations of the nuisance variables, so they always have interaction
terms.)
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Quality Control for Medical Devices

A medical device manufacturer produces vascular grafts combining resin,
lubricant and very thin tubes with some pressure machinery. He suspects that
the amount of pressure may have an effect on production yield (in % of grafts
without any defect). However, variability between different batches due to the
inconsistent quality of the raw materials is also present and may be wrongly
attributed to changes in pressure. Therefore, he tries 4 different pressure
settings randomised within each of 6 batches of resin (the blocks).

> graft = read.table("medical.devices.txt", header = TRUE)

> head(graft)

batch pressure yield

1 I 8500PSI 90.3

2 I 9100PSI 82.5

3 I 8900PSI 85.5

4 I 8700PSI 92.5

5 II 9100PSI 89.5

6 II 8900PSI 90.8

Note that there are no replicates but the model is not singular because it does
not include any interaction term.
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So, Is Low Yield the Resin’s Fault?

From the p-value, we conclude that pressure settings affects mean yield
(p ≈ 0.002); and that there is a significant variability in different batches of
resin (p ≈ 0.006).

> anova(lm(yield ~ batch + pressure, data = graft))

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

batch 5 192.25 38.450 5.2487 0.005532 **

pressure 3 178.17 59.390 8.1071 0.001916 **

Residuals 15 109.89 7.326

Had we not accounted for the resin batches in the blocks, the estimate of the
effect of pressure would be strongly biased (0.023/0.002 = 12.24).

> anova(lm(yield ~ pressure, data = graft))

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

pressure 3 178.17 59.390 3.9313 0.02345 *

Residuals 20 302.14 15.107
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Which Pressure Differences are Significant?

This experimental design does not imply any interaction term, so we can just
compute Tukey’s test on the treatment (or in general, on the configurations of
the treatment variables).

> TukeyHSD(aov(lm(yield ~ batch + pressure, data = graft)), "pressure")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = lm(yield ~ batch + pressure, data = graft))

$pressure

diff lwr upr p adj

8700PSI-8500PSI -1.133333 -5.637161 3.370495 0.8854831

8900PSI-8500PSI -3.900000 -8.403828 0.603828 0.1013084

9100PSI-8500PSI -7.050000 -11.553828 -2.546172 0.0020883

8900PSI-8700PSI -2.766667 -7.270495 1.737161 0.3245644

9100PSI-8700PSI -5.916667 -10.420495 -1.412839 0.0086667

9100PSI-8900PSI -3.150000 -7.653828 1.353828 0.2257674

Differences of 200PSI are never significant. Moving from 8500 or 8700PSI to
9100PSI produces significant changes in the mean treatment effect; lower
temperatures appear to produce higher yield.
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(Balanced) Incomplete Block Designs

Sometimes we cannot have a complete design because we do not have enough
experimental units to allocate all combinations of treatments and the block
variables. We may still be able to set up a balanced incomplete block design in
which any two treatments appear together the same number of times; there are
tables in classic textbooks that detail such an allocation strategy for common
experimental setups. For instance:

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4

y1T1
y2T1

− y4T1

− y2T2 y3T2 y4T2

y1T3 y2T3 y3T3 −
y1T4

− y3T4
y4T4

Treatments are still randomised inside each block, and in the design above
each treatment appears three times with a single treatment missing from each
block. Note that there are still enough observations (12) compared to the
degrees of freedom of the model (7) even without replicates.
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Conditions on Incomplete Block Designs

The combinations of numbers of treatments (v), numbers of replicates
(r), numbers of blocks (b), and numbers of observations per block (k)
are limited (see Cox & Reid’s Experimental Design); sometimes it is not
possible to achieve perfect balance. Intuitively, n = rv = bk so fixing r,
v, k we can determine b, or fixing b we can determine k. If the solution
is an integer, a balanced incomplete block design is possible.
In the medical device example, with 3 observations per block we get:

I II III IV V VI TOTAL

8500PSI x x x x 4
8700PSI x x x x x 5
8900PSI x x x x x 5
9100PSI x x x x 4

TOTAL 3 3 3 3 3 3 18
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Medical Devices, Incomplete Blocks

If we apply the (not quite balanced) incomplete block design to the medical
devices example, we see that both F tests are not as significant as before
because of the smaller sample size (which means lower power). The batch
effect is now clearly not significant, but the pressure effect is still significant.

> incomplete = graft[-c(2, 8, 12, 16, 20, 24), ]

> anova(lm(yield ~ batch + pressure, data = incomplete))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

batch 5 63.418 12.684 1.9120 0.18769

pressure 3 95.543 31.848 4.8008 0.02903 *

Residuals 9 59.704 6.634

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

However, the coefficients of the models from the complete and incomplete
designs are quite similar. This suggests that the incomplete design is unbiased
like the complete design.
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Factorial Designs

A factorial design an experimental design that includes all possible
combinations of the levels of the factors that are investigated. It includes
as particular cases the one- and two-way ANOVA and 2k designs (with k
factors each with 2 levels). The underlying mathematical model is

y = µ︸︷︷︸
population mean

+ τi + υj + . . .︸ ︷︷ ︸
experimental factors

+ (τυ)ij + . . .︸ ︷︷ ︸
two-way interactions

+

+ (βδ)kl + . . .︸ ︷︷ ︸
blocking factors

+ ε with ε ∼ N(0, σ2) (72)

for each observation, optionally with blocks. As before, configurations of
the experimental factors are randomised (again possibly within each
block). Two replicates are needed for each of them to be able to
estimate interaction terms.
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Detecting Targets on a Radar

An engineer is studying methods for improving the ability to detect targets on
a radar scope with two different filters under the influence of background noise
or ground clutter. To do that he designs a factorial experiment with 3 ground
clutter levels (and the 2 filters); the response is the intensity of the target,
which is increased until the operator observes it and then recorded. To account
for experience levels of different operators, 4 operators are randomly selected as
used as blocks. Once an operator is chosen, the order in which the six
treatment combinations are run is randomised.

> radar = read.table("radar.txt", header = TRUE)

> head(radar)

operator clutter filter intensity

1 I LOW A 90

2 I MEDIUM A 102

3 I HIGH A 114

4 I LOW B 86

5 I MEDIUM B 87

6 I HIGH B 93
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Operators Have Very Different Skill Levels

The main effects of both experimental factors are significant, but their
interaction is not. Note that there is no interaction between block and
experimental factors.

> anova(lm(intensity ~ clutter * filter + operator, data = radar))

Analysis of Variance Table

Response: intensity

Df Sum Sq Mean Sq F value Pr(>F)

clutter 2 335.58 167.79 15.1315 0.0002527 ***

filter 1 1066.67 1066.67 96.1924 6.447e-08 ***

operator 3 402.17 134.06 12.0892 0.0002771 ***

clutter:filter 2 77.08 38.54 3.4757 0.0575066 .

Residuals 15 166.33 11.09

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Thus, we conclude that both clutter level and the filter affect the operator’s
ability to detect targets, but their interaction is not supported by the data.
There is also substantial variability in the performance of different operators.
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Differences in Treatment Means in Factorial Designs

Since we have two experimental factors, the comparison of means that makes
the most sense is that on their configurations.

> TukeyHSD(aov(lm(intensity ~ clutter * filter + operator,

+ data = radar)), "clutter:filter")

However, in this example the interaction is not significant and therefore it
makes sense to compare (marginal) differences for the main effects.

> TukeyHSD(aov(lm(intensity ~ clutter * filter + operator,

+ data = radar)), "clutter")

> TukeyHSD(aov(lm(intensity ~ clutter * filter + operator,

+ data = radar)), "filter")

Most differences in the command above appear to be significant. Note that
Tukey’s test is an omnibus test, so multiplicity adjustment is not needed even
when it returns a large number of p-values.
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A Note About Confounding

A variable is a confounder if

1. it is not a block or experimental factors; and

2. correlates with both the response and a factor included in the
experimental design.

Factors included in an experimental design are orthogonal by construction, and
the interactions with block factors are eliminated through randomisation. In
observational data, confounding may happen even with recorded explanatory
variables if they are collinear or tend to vary with common patterns.

There is no general solution for confounding in experimental data, because it is
difficult to ascertain the presence of a confounder and which factors it is
related to. In observational data, when both the confounder and the
confounded variables are available, the effect of the former can be separated
with an instrumental variable model (also known as two-stage least squares
model), which is a basic form of hierarchical linear model.
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Best Practices in Designing Experiments

• Vary multiple (but not too many) design factors at once.

• Stratify the experimental units into blocks which are relatively
homogeneous.

• Have enough replication.

• Strive for balance.

• Randomise all arbitrary choices.

• Blind the experiment so that neither the experimenter nor the
subjects know which subjects received which treatment.
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Robust and Advanced Regression

Methods
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Robust and Advanced Regression Methods

Violating the Assumptions of Linear Models

As we have seen at the beginning of the course, linear models have one
set of assumptions from ordinary least squares:

1. explanatory variables are not collinear,

2. residuals have mean zero (E(εi) = 0),

3. residuals are homoscedastic (VAR(εi) = σ2ε),

4. residuals are uncorrelated (COV(εi, εj) = 0);

and in maximum likelihood estimation we assume that residuals are
normally distributed, so that in the end εi ∼ N(0, σ2ε).

It may (often) happen that when trying to validate the model we find
out that one or more of these assumptions are violated. In that case, we
need to switch to more advanced forms of linear regression with weaker
or more robust assumptions.
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Heteroschedasticity: Weighted Least Squares

A linear model with heteroschedastic residuals can be written as

y = Xβ + ε ε ∼ Nn(0,Σ) with Σ = diag(σ2ε1 , . . . , σ
2
εn); (73)

or equivalently using weights so that σ2εi = wiσ
2
ε . In that case model

estimation minimises the weighted least squares

argmin
β

n∑
i=1

ε̂2i = argmin
β

(y −Xβ)TW(y −Xβ) (74)

where W = diag(w1, . . . , wn), and estimates the regression coefficients
as

β̂ = (XTWX)−1XTWy. (75)

The weights can be estimated using a very general technique called
iteratively re-weighted least squares (IRLS).
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Heteroschedasticity: Linear Mixed Models

Another common way for residuals to be heteroschedastic is to depend
on a categorical variable, say

yi = β0A + xi1β1 + . . . xipβp with εi ∼ N(0, σ2A) if i ∈ A, (76)

yi = β0B + xi1β1 + . . . xipβp with εi ∼ N(0, σ2B) if i ∈ B. (77)

Such models are called in many ways in the literature, such as mixed
effects models, multilevel models or hierarchical models. They can in
principle be estimated using weighted least squares, but there are
specific techniques that allow a better interpretation of the results.
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Robust Regression: Least Absolute Deviations

If the data include outliers, a more robust function to minimise is the
sum of the absolute values of the residuals,

argmin
β

n∑
i=1

|yi − β0 − xi1β1 − . . .− xipβp|, (78)

instead of the squared residuals. So, this is called an L1 regression as
opposed to an L2 regression such as ordinary least squares. It is known
as least absolute deviations (LAD) regression.

While it has the advantage of being robust to outliers, small changes in
the data can lead to very different estimates (because L1 is not
smooth); it may have multiple optimal solutions (because L1 is convex
but not strictly convex); and it lacks most of closed-form results
available for least squares.
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Generalised Linear Models

Assuming normally-distributed errors constrains the kinds of response variables
we can model without transforming them. A general class of models that
tackles this problem is generalised linear models (GLM), which assume the
response has a distribution for the exponential family and regresses its
expected value through a link function:

g(E(yi)) = ηi where ηi = β0 + xi1β1 + . . .+ xipβp. (79)

For instance, setting g(·) to the identity function leads back to a classic linear
regression; the logit function g(π) = log{π/(1− π)} allows to model binomial
responses with success probability π.

Model estimation is done by maximising the likelihood of the model after
substituting the regressors in the density through g−1(ηi).
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Generalised Linear Models: Binomial Response

For a binary response, the natural assumption is the Binomial distribution. So

E(yi) = πi and g(πi) = ηi = β0 + xi1β1 + . . .+ xipβp (80)

and as a link function we need a g : [0, 1]→ R. Popular candidates are:

• the logistic function or log-odds ratio

g(π) = log
π

1− π
; (81)

• the probit function

g(π) = Φ−1(π), where Φ() is the Normal CDF; (82)

• and the complementary log-log function

g(π) = log(− log(1− π)). (83)
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Generalised Linear Models: the glm() Function

Fitting a generalised linear model using glm() is very similar to fitting a classic
linear model with lm(). coef(), resid(), fitted(), predict() also work in
the same way as before.

> glm(GROUP ~ ALG + STAT, data = marks, family = binomial(link = logit))

Call: glm(formula = GROUP ~ ALG + STAT, family = binomial(link = logit),

data = marks)

Coefficients:

(Intercept) ALG STAT

24.32059 -0.43496 -0.07979

Degrees of Freedom: 87 Total (i.e. Null); 85 Residual

Null Deviance: 119.8

Residual Deviance: 43.98 AIC: 49.98

The additional argument family specifies which distribution we are assuming
for the response and the link function g().
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Ridge Regression: the General Idea

For a linear model to be fitted, explanatory variables must not be
collinear: otherwise (XTX) is not invertible and we cannot estimate β̂.
To make that matrix invertible we can add a penalty term to the least
squares minimisation,

argmin
β

{
(y −Xβ)T (y −Xβ) + λ2

p∑
i=0

β2i

}
λ2 > 0, (84)

so that the estimator for the regression coefficients becomes

β̂ = (XTX + λ2Ip)
−1XTy. (85)

We can always compute that because λ2Ip is full rank, and thus
XTX + λIp is always invertible if λ2 > 0.

Marco Scutari University of Oxford



Robust and Advanced Regression Methods

Ridge Regression: Penalty and Regression Coefficients
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Ridge Regression: Choosing λ2

They key point in fitting ridge regression is tuning the model by
choosing λ2, typically using (multiple runs of) cross-validation to find
the value that minimises residuals or maximises the likelihood.

> library(penalized)

> opt.lambda2 = optL2(response = marks[, "STAT"],

+ penalized = marks[, c("MECH", "VECT", "ALG", "ANL")])

> penalized(response = marks[, "STAT"],

+ penalized = marks[, c("MECH", "VECT", "ALG", "ANL")],

+ lambda2 = opt.lambda2$lambda)

Penalized linear regression object

5 regression coefficients

Loglikelihood = -346.6334

L2 penalty = 308.8962 at lambda2 = 1381.118

There are several packages to fit ridge regression in R, such as
penalized() (slower, intuitive parameterisation) and glmnet() (much
faster, different parameterisation).
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Ridge Regression: Cross-Validated Log-Likelihood
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Bias-Variance Trade-Off

Due to the L2 penalty the estimated regression coefficients are biased

β̂RIDGE = (XTX + λ2Ip)
−1XTy = [Ip − λ2(XTX)−1]β̂OLS (86)

and so are the corresponding ŷRIDGE. On the other hand, introducing
that bias may improves prediction because of the bias-variance trade-off:

E[(y − ŷRIDGE)2] = E[(y − E[ŷRIDGE])2]︸ ︷︷ ︸
Bias2(ŷRIDGE)

+

E[(ŷRIDGE − E[ŷRIDGE])2]︸ ︷︷ ︸
VAR(ŷRIDGE)

(87)

For new observations, introducing a little bit of bias (towards “simpler”
models) can dramatically improve the accuracy of prediction at the cost
of degrading the accuracy of fitted values somewhat.
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How Many Degrees of Freedom has Ridge Regression?

Take the hat matrix H = X(XTX)−1XT . For ordinary least squares, if
X is full rank, then

tr(H) = p+ 1 (88)

gives the number of parameters of the model, i.e. the degrees of
freedom used by the model. For any model of the form ŷ = Sy, we can
compute the effective degrees of freedom in the same way. For ridge
regression:

tr[Hλ2 ] = tr[X(XTX + λ2Ip)
−1XT ] =

p∑
i=1

d2i
d2i + λ2

(89)

where the di are the singular values of X (from the singular value
decomposition, SVD).
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Does That Look Like Principal Components Again?

Using classic SVD notation, i.e. X = UDVT , we can write

ŷRIDGE = Xβ̂RIDGE =

p∑
i=1

(
ui

d2i
d2i + λ2

uTi

)
y (90)

which means that:

1. ridge regression projects the y on the principal components of X;
and

2. it shrinks low-variance components towards zero while leaving
large-variance components relatively untouched.

P.S.: you do not shrink the intercept, you centre the y first and the and
then add it back.
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LASSO Regression

Another approach using penalised least squares is the least absolute
shrinkage and selection operator (LASSO), which has a formulation
similar to ridge regression:

argmin
β

{
(y −Xβ)T (y −Xβ) + λ1

p∑
i=0

|βi|

}
λ1 > 0. (91)

The penalty term is based on the absolute values of the βi (L1 norm),
not on their squares (L2 norm); this makes the penalty non-smooth and
forces coefficients to converge sharply to zero as opposed to getting
asymptotically close as the penalty increases.

Since regression coefficients can be forced to be exactly zero, this means
we are doing model selection at the same time as model estimation.
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LASSO Regression: Penalty and Regression Coefficients
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LASSO Regression: Choosing λ1

Tuning the model is done in the same way as for ridge regression.

> library(penalized)

> opt.lambda1 = optL1(response = marks[, "STAT"],

+ penalized = marks[, c("MECH", "VECT", "ALG", "ANL")])

> penalized(response = marks[, "STAT"],

+ penalized = marks[, c("MECH", "VECT", "ALG", "ANL")],

+ lambda1 = opt.lambda1$lambda)

Penalized linear regression object

5 regression coefficients of which 4 are non-zero

Loglikelihood = -346.675

L1 penalty = 1033.313 at lambda1 = 1058.482
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LASSO Regression: Cross-Validated Log-Likelihood
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The Elastic Net Regression

Finally, a more flexible model is elastic net: it combines ridge regression
and LASSO through their penalties and parameters λ1 and λ2:

argmin
β

{
(y −Xβ)T (y −Xβ) + λ1

p∑
i=0

|βi|+ λ2

p∑
i=0

β2i

}
λ1, λ2 > 0.

(92)

Ridge regression arises as a particular case when λ1 = 0, and LASSO
when λ2 = 0. The general model is expensive to estimate because it
must be tuned on λ1 and λ2 simultaneously, typically on a sensibly
scaled and spaced grid of values.
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Elastic Net: Fitting the Model

Elastic net is also found with a second parameterisation based on the
one-to-one transformation:

α =
λ1

λ1 + λ2
and λ =

λ1 + λ2
1 + λ2

(93)

As we have seen, penalized() uses (λ1, λ2); glmnet() uses (α, λ) but
it is easy to convert back and forth:

> alpha = lambda1 / (lambda1 + lambda2)

> lambda = (lambda1 + lambda2) / (1 + lambda2)

> glmnet(y = as.matrix(marks[, "STAT"]),

+ x = as.matrix(marks[, c("MECH", "VECT", "ALG", "ANL")]),

+ alpha = alpha, lambda = lambda)

or equivalently:

> penalized(response = marks[, "STAT"],

+ penalized = marks[, c("MECH", "VECT", "ALG", "ANL")],

+ lambda1 = lambda1, lambda2 = lambda2)
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Splines Regression

A very flexible way of using polynomial terms and dummy variables such as in
(50) and (52) are polynomial or regression splines. They are constructed as
follows:

1. divide the range the an explanatory variable in m > 2 intervals delimited
on the left by points called knots, e.g.
[min(x1),max(x1)], [κ1,max(x1)], . . . , [κm−1,max(x1)];

2. set up one dummy variable for each interval, e.g. 1lj(x1 > κj);

3. decide on a degree l and set up a regression model with a global
polynomial set of terms and add interactions with the dummy variables
for the highest-order coefficient:

yi = β0 + xi1β1 + . . .+ xli1β1.l +

m∑
j=1

1lj(xi1 > κj)(xi1 − κj)lγj ; (94)

4. to make the overall regression smooth, enforce smoothness at the knots
by constraining it to be differentiable at the knots.
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Splines: Knots and Polynomials
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Robust and Advanced Regression Methods

Splines: Smoothness and the Complexity

The complexity of a regression splines model is given by:

• the number of knots κi, which determines how many times and
where the polynomial’s trajectory is re-adjusted;

• the degree of the polynomial, which makes the polynomial more or
less flexible in fitting the response;

• the constraints on the coefficients, such as those required by
differentiability.

Therefore the degrees of freedom of the model in general are not equal
to the number of parameters, and have to be estimated from the model
as effective degrees of freedom from the H matrix or the analogous
smoothing matrix S by analogy with classic linear regression, as

tr(H) =

n∑
i=1

hii = p+ 1. (95)
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Splines: Equivalent Degrees of Freedom
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An R command to fit a spline regression is sm.spline() in package pspline.
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Robust and Advanced Regression Methods

One Last Model: Locally Weighted Least Squares

Another model that can fit “wobbly” regression curves is locally
weighted least squares (LOWESS), which is a local linear regression
with weights defined as follows for a single explanatory variable:

1. for each yi, take the corresponding xi1 and compute the weights
for all other (yj , xj1) with a non-negative function w(|xi1 − xj1|)
that decreases as xj1 gets farther from xi1;

2. estimate ŷi using weighted linear regression with the weights above.

In practice, w(·) is usually chosen to be exactly zero outside a small
interval centred on xi1, whose length is called the bandwidth and
determines the smoothness of the regression curve. This makes model
estimation much faster since only a small number of observations is
used to fit each (yj , xj1).
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LOWESS: Local Weights and Regression
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Fitting a LOWESS model

A commonly used function to fit a LOWESS model is loess(), which
by default fits a second-order polynomial for each yi using a fraction of
the observations controlled by the span argument.

> x = sort(runif(100, 0, 10))

> y = x * sin(x) + rnorm(100, mean = 0, sd = 1)

> loess(y ~ x, span = 0.5)

Call:

loess(formula = y ~ x, span = 0.5)

Number of Observations: 100

Equivalent Number of Parameters: 6.27

Residual Standard Error: 1.009

> loess(y ~ x, span = 0.75)

Call:

loess(formula = y ~ x, span = 0.75)

Number of Observations: 100

Equivalent Number of Parameters: 4.34

Residual Standard Error: 1.845
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LOWESS: Bandwidth and Smoothing
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Motorcycle Accident Crash Test

This data set records 133 measurements of head acceleration (in
multiples of g) and time after impact (in milliseconds) in a simulated
motorcycle crash experiment on the efficacy of crash helmets.

> library(MASS)

> head(mcycle)

times accel

1 2.4 0.0

2 2.6 -1.3

3 3.2 -2.7

4 3.6 0.0

5 4.0 -2.7

6 6.2 -2.7

> cor(mcycle$times, mcycle$accel)

[1] 0.2964033

The two variables times and accel are strongly dependent, but not
linearly; therefore their marginal correlation is small and a classic linear
model has R2 ≈ 0.08.
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Crash Test: a LOWESS Model
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Crash Test: a Splines Model
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The End
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