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Integrative Analyses in Statistical Genetics

Bayesian networks (BNs) represent a flexible tool for quantitative [6],
qualitative and causal [9] reasoning, and are one of the building blocks
used to specify complex models and Monte Carlo inference techniques in
machine learning [8].

As such, they are well suited to integrative analyses in genetics and
systems biology, that is, jointly modelling data from different sources:

• various forms of sequence data (e.g. SNPs, full sequence data);

• various qualitative and quantitative traits (e.g. disease scores,
morphological characteristics);

• epigenetic data (e.g. methylation);

• products of gene transcriptions (e.g. RNA, proteins).

Depending on the data at hand, such analyses are called GWAS, GS,
eQTL, GxE GWAS, mQTL, etc. and make up the vast majority of
literature in the field.
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Integrating Two Types of Data: GWAS and GS

The baseline model for genome-wide association studies (GWAS) and genomic
selection (GS) is the linear mixed model [3], rebranded as GBLUP (Genetic
BLUP, [7]). It is typically fitted on a single trait Xt at a time using a large
number S of SNPs XS in the form of 0/1/2 allele counts from a genome-wide
profile:

Xt = µ+ ZSu + ε, u ∼ N(0,Kσ2
u)

where µ is the population mean, ZS is the design matrix for the markers, u are
random effects, ε is the error term and K is the kinship matrix encoding the
relatedness between the individuals. When K can be expressed in the form
XSXS

T, GBLUP can be shown to be equivalent to the Bayesian linear
regression

Xt = µ+
S∑

i=1

X∗
siβi + ε with SNP effect prior β ∼ N

(
0,
σ2
g

S
I

)
,

for some transformation of the Xsi [10, 11].
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Gaussian Bayesian Networks (GBNs)

GBNs use a DAG G to represent the dependence structure of the multivariate
distribution of X = {X1, . . . Xp} under the following assumptions [6]:

1. X has a multivariate normal distribution; and

2. dependencies between the Xis are linear.

Under these assumptions COV(X) = Σ is a sufficient statistic for the GBN
and:

1. if Xi and Xj are graphically separated in G (d-separation, [6]), then
Ωij = (Σ−1)ij = 0; and

2. the local distribution associated with each Xi is a linear regression on the
parents ΠXi

of Xi, i.e.:

Xi = µXi +Xjβj + . . .+Xkβk + εi, εi ∼ N(0, σ2
i ).

Note that βj = −Ωij/Ωii in the above [2].
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Assumptions for Genetic Data

In the spirit of commonly used additive genetic models [5, 7], we make some
further assumptions on the GBN to obtain a sensible causal model:

1. traits can depend on SNPs (i.e. Xsi → Xtj ) but not vice versa (i.e. not
Xtj → Xsi), and they can depend on other traits (i.e. Xti → Xtj , i 6= j);

2. SNPs can depend on other SNPs (i.e. Xsi → Xsj , i 6= j); and

3. dependencies between traits follow the temporal order in which they are
measured.

Under these assumptions, the local distribution of each trait is

Xti = µti
+ ΠXti

βti
+ εti

= µti
+Xtjβtj + . . .+Xtkβtk︸ ︷︷ ︸

traits

+Xslβsl + . . .+Xsmβsm︸ ︷︷ ︸
SNPs

+ εti , εti ∼ N(0, σ2
ti
I)

and the local distribution of each SNP is

Xsi = µsi
+Xslβsl + . . .+Xsmβsm︸ ︷︷ ︸

SNPs

+ εsi , εsi ∼ N(0, σ2
si
I).
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Learning GBNs from Genetic Data

We used the R packages bnlearn [12] and penalized [4] to implement the
following hybrid approach to GBN learning [13].

1. Structure Learning.

1.1 For each trait Xti , use the SI-HITON-PC algorithm [1] and the
t-test for correlation to learn its parents and children; this is
sufficient to identify the Markov blanket B(Xti) because of the
assumptions on the GBN. The choice of SI-HITON-PC is motivated
by its similarity to single-SNP analysis.

1.2 Drop all the markers which are not in any B(Xti).
1.3 Learn the structure of the GBN from the nodes selected in the

previous step, setting the directions of the arcs as discussed above.
We identify the optimal structure as that which maximises BIC.

2. Parameter Learning. Learn the parameters of the local distributions using
ordinary least squares or ridge regression.
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A GWAS Model from a Wheat Mapping Population

YR.GLASS

HT

FUS

MIL

FT

G418

G311

G800

G877

G866

G795

G2570

G260

G832

G1896

G2953

G942

G266

G847

G2835

G200

G2208 G257

G1906

G261

G1984

G599

G383

G2416

G1033

G1941

G1853

G1338

G524

G1945

G1276

G1789

G2318

G1800

G1294

G775

YLD

YR.FIELD

G1750

G43
G1373

G1217

G2588

G1263

G2920

50 nodes (7 traits, 43 SNPs)
from 600 obs. and 3.2K SNPs.

78 arcs, interpreted as putative
causal effects.

Thickness represents arc
strength, computed as the
frequency of each arc in the
100 GBNs used in model
averaging.
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DJ, Mackay I (2014).
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Genetics, 198(1), 129–137.
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Adding Environmental Effects: GxE Interactions

The BN model in the previous slide has quite a few limitations, especially when
interpreted as a causal model:

• It only uses SNPs to explain traits; there are multiple levels of unobserved
biological processes in the middle acting as confounders.

• It assumes all observations are collected under the same conditions
(environmental and/or exogenous), which is rarely the case for large
experiments, and are homogeneous overall (e.g. no stratification or
individuals from different ethnicities/subspecies).

• It assumes all variables are continuous, so that they can be meaningfully
modelled with linear regression on their natural scale.

A step forward in addressing these concerns is moving from GBNs to
conditional Linear Gaussian Bayesian networks (CLGBNs) to include
environmental effects as discrete variables and model genotype-by-environment
interactions (GxE) and those with the traits.
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Conditional Linear Gaussian Bayesian networks (CLGBNs)

CLGBNs extend traditional GBNs using mixture of Gaussians under the
following assumptions [6, 8]:

1. discrete variables can only have discrete parents;

2. the local distribution for a discrete variable is a conditional
probability table (CPT); and

3. the local distribution for a continuous variable is a set of linear
regressions, one for each configuration δ of the discrete parents ∆Xi

(if any), with the continuous parents ΓXi as explanatory variables:

Xiδ = µiδ +Xjδβjδ + . . .+Xkδβkδ + εiδ, εiδ ∼ N(0, σ2
iδ).

Note that, unlike most literature on mixture models, the δ does not
arise from a latent variable but from an observed one.
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Learning CLGBNs from Genetic Data

In addition to the assumptions used to learn GBNs, now we also assume that:

• traits and genes can depend environmental effects and experimental
variables but not vice versa.

And the hybrid learning approach from [13] is modified as follows.

1. Structure Learning.

1.1 For each trait Xti , use the SI-HITON-PC algorithm [1] and the
t-test for correlation to learn its parents and children among the
genes; then do a second pass also considering the environmental
effects using SI-HITON-PC and a log-likelihood ratio test.

1.2 Drop all the markers which are not in any B(Xti).
1.3 Learn the structure of the CLGBN from the nodes selected in the

previous step, setting the directions of the arcs as discussed above.
We identify the optimal structure as that which maximises BIC.

2. Parameter Learning. Learn the parameters of the local distributions using
empirical frequencies for the discrete variables and ordinary least squares
or ridge regression for the continuous variables.
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Another Wheat Data Set, From Multiple Countries

We prototyped this approach on the wheat population described in:

Bentley AR, Scutari M, Gosman N et al. (2014). Applying Association Mapping and
Genomic Selection to the Dissection of Key Traits in Elite European Wheat.

Theoretical and Applied Genetics, 127(12), 2619–2633.

This data set contains 376 wheat varieties from different countries (210 FRA,
90 DEU, 75 GBR) trialled in the same set of fields in GBR, DEU and FRA to
produce a variety of gene-environment interactions. After preprocessing marker
profiles include 2.1K DaRTs and SNPs and 3 known genes: PpdD1 297
(flowering time) and Rht1 267/Rht2 400 (dwarfing genes). Traits include:

• Yield (YLD, t/ha)

• Flowering time (FT, days)

• Height (HT, cm)

• Winter Kill (WK, 1–9)

• Grain Protein Content (GPC, %)

• Thousand Grain Weight (TGW, weight/hl)

• Specific Weight (SPWT, weight/hl)

• Earing (EAR, ears/m2)

• Awns (AWNS, 0–1)
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GBNs, Adding Countries as Standalone Dummy Variables
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CLGBNs, Adding Countries as a Single Discrete Variable
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Predictive Performance

GBN (69 nodes, 117 arcs, p = 186) vs CLGBN (227 nodes, 421 arcs, p = 941)

YLD FT HT WK GPC
ρC 0.94 vs 0.94 0.18 vs 0.21 0.86 vs 0.86 0.52 vs 0.46 0.94 vs 0.94
ρG 0.16 vs 0.17 0.18 vs 0.21 0.19 vs 0.21 0.25 vs 0.19 0.22 vs 0.24
ENET 0.17 0.27 0.20 0.18 0.26
GBLUP 0.13 0.15 0.14 0.11 0.14

TGW SPWT EAR AWNS Avg.
ρC 0.89 vs 0.90 0.97 vs 0.97 0.83 vs 0.83 0.30 vs 0.28 0.71 vs 0.71
ρG 0.19 vs 0.21 0.23 vs 0.26 0.18 vs 0.22 0.30 vs 0.28 0.21 vs 0.22
ENET 0.21 0.31 0.20 0.27 0.23
GBLUP 0.13 0.15 0.14 0.09 0.13

ρG = predictive correlation given all SNPs and all environmental effects.
ρC = predictive correlation given putative causal effects identified by the BN.

Computed for α = 0.02 averaging 10× 10-fold cross-validations, σ 6 0.016 for
traits and σ = 0.005 for the average. ENET is a single-trait elastic net
penalised regression [14]; GBLUP is a single-trait linear mixed model.
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Pros & Cons of the Two Approaches

• GBNs use fewer nodes and parameters for the same α and predictive power,
and thus produce models that are potentially more stable and possibly
predict better at very low sample sizes. Even so, there is no evidence
suggesting that CLGBNs are overfitting.

• However CLGBNs disentangle more GxE effects, because they allow different
residual variances and regression coefficients for each environment (as
opposed to different intercepts in GBNs).

• CLGBNs make it possible to compute posterior probabilities of the type
P(COUNTRY | SNPs,TRAITS), which is not really possible in GBNs
because each level of the environmental effects is a separate node in the
model.

• Both GBNs and CLGBNs are competitive with the elastic net, which is a
state-of-the-art approach to genomic prediction, and at the same time they
provide and intuitive representation which is useful for quantitative and
qualitative reasoning.
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Thanks!
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Thanks!
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