
The Anatomy of a Machine Learning Pipeline
An Introduction

Marco Scutari 1 marco@ppml.dev
Mauro Malvestio 2 mauro@ppml.dev

1 Dalle Molle Institute for Artificial Intelligence (IDSIA), Lugano, Switzerland
2 DSCOVR, Milano, Italy

January 10, 2024

mailto:marco@ppml.dev
mailto:mauro@ppml.dev

ARROW-RIGHT Course Overview

Industrial Seamless Pipe Piercing: Plug Detection
and Localisation with Computer Vision

Machine Learning Pipeline: What Is It?
Project Scoping and Baseline Implementation
Data Ingestion and Preparation
Model Training and Evaluation
Monitoring, Logging and Reporting

Assorted Trade-Offs and Best Practices

This Course

TOPICS:
• Amotivating example:
Piercing plug detection and
localisation in seamless pipe
production with computer
vision.

• Anatomy of a machine
learning pipeline.

• The software and data
lifecycles.

• Setting up and working with a
pipeline, illustrated with
code.

• Trade-offs and best practices
specific to machine learning
pipelines.

MORE ABOUT THIS:

Who We Are

Marco Scutari

• Senior Researcher in Machine
Learning, Consultant.

• Background in statistics and
computer science.

• Worked at UCL, University of
Oxford; now at Swiss national
AI research centre IDSIA.

• Writes popular scientific
libraries (bnlearn, fairml).

Mauro Malvestio

• Senior Technologist,
Consultant.

• Background in software
engineering, machine
learning systems,
embedded systems and
cloud computing.

• Worked in software
engineering, IT operations,
and CTO roles.

Check Course Overview

ARROW-RIGHT Industrial Seamless Pipe Piercing: Plug Detection
and Localisation with Computer Vision

Machine Learning Pipeline: What Is It?
Project Scoping and Baseline Implementation
Data Ingestion and Preparation
Model Training and Evaluation
Monitoring, Logging and Reporting

Assorted Trade-Offs and Best Practices

Use Case: Seamless Pipes Production

Seamless pipes for the Oil & Gas and Chemical industries are produced
using a rotary piercing method, where circular billets (solid tube blanks)
are passed between two rotating rolls and pierced by a fixed plug.

This is what the process looks like:

The rotary piercing process is crucial in shaping the round billet into a
tubular form and producing seamless pipes.

Use Case: The Domain Problem

The plug is not just fundamental for shaping and tubular quality.
Operating without the plug without proper automated detection
increases the risk of severe operational hazards and damage to the
manufacturing facility.

with Plug (True positive) without Plug (True negative)

Occasionally, the mechanical loading fails to attach the plug to the
spindle, risking a drill operation without it.

Use Case: Business Objective

The computer vision model evaluates in real-time if the conditions for
starting the piercing process are met, and it delivers feedback to an
industrial actuator via a Programmable Logic Controller (PLC).

Technical challenges: the model should

1. work in near real-time, invoked by a remote edge process/machine;

2. be accessible via a remote low-latency inference API;

3. be robust against false positives (when the model detects the plug,
but the plug is not actually present).

Use Case: Vision Approach

We require an approach towards the development of this model to
ensure it integrates two key functionalities:

1. Classify each image as “Plug” or “no-Plug”.

2. Locate the plug and highlight it with a bounding box when present.

We use a Convolutional Neural Network (CNN) architecture, specifically
the YOLO (You Only Look Once) model, which has been fine-tuned on an
industrial data set comprising 2000 images.

Check Course Overview

Check Industrial Seamless Pipe Piercing: Plug Detection
and Localisation with Computer Vision

ARROW-RIGHT Machine Learning Pipeline: What Is It?
Project Scoping and Baseline Implementation
Data Ingestion and Preparation
Model Training and Evaluation
Monitoring, Logging and Reporting

Assorted Trade-Offs and Best Practices

What is a Machine Learning Pipeline

Depending on whom you ask, youmay get different definitions of what a
pipeline is:
1. A data scientist will tell you that it is a sequence of operations

performed on data from data preparation to model selection, model
estimation and inference. In other words, a data analysis pipeline.

2. A software engineer will tell you that a pipeline is the workflow that
underlies the process of developing and delivering a piece of
software. In other words, a software development pipeline.

Both are true for a machine learning pipeline, which codifies the steps of
developing machine learning (ML) software from a simple proof of
concept into a production software that uses data to answer some
business or academic need.

What is a Machine Learning Pipeline

Amachine learning pipeline is the codification of
• data ingestion and data preparation;
• model training and experiment tracking;
• monitoring, logging and reporting.

into independent, reusable, modular parts that can be pipelined
together to orchestrate the flow of data into, and outputs from, machine
learning models.

Why should we bother?
• Independent: we can track changes effectively.
• Reusable: we can use the same code in development and
production for different tasks.

• Modular: we can swapmodels and data to explore new problems
and adapt to change.

Pipelines for Reproducibility

Pipelines for Reliability and Trust

Pipeline, Software Lifecycle, Data Lifecycle

We canmakemachine learning pipelines robust and reliable with:
• Continuous integration (CI): committing small, frequent changes to
a version control repository.

• Continuous Delivery (CD): being able to release a working version of
the software at any time.

We do that for models, data and code in an experiment tracking platform
to implement MLOps (DevOps for ML) and automate testing, release
management and deployment.

Without experiment tracking and MLOps, we quickly accumulate
technical debt at the data, model, architecture and code levels because
we cannot keep track of their complexity as the pipeline evolves over
time.

The Lifecycle of an ML Pipeline, in Pictures

Project
Scope

Baseline
Implementation

Data
Ingestion

Validation &
Artefacts

Deploy
Models

Inference

Monitoring &
Logging

Reporting &
Dashboards

Data
Preparation

Train
Models

Evaluate
Models

Software is never finished, Neither Are Data

Data change.
Software is never finished.
The needs that motivate its existence change over time.
A machine learning pipeline is improved and evolved over time using
MLOps: it has a lifecycle.

Broadly speaking, we iterate over four phases:
• planning and exploration (Project Scope, Baseline Implementation);
• data andmodels (Data Ingestion, Data Preparation, Train Models,
Evaluate Models);

• deploying to production (Validation & Artefacts, Deploy Models);
• running and using the ML pipeline (Inference, Monitoring & Logging,
Reporting & Dashboards).

ML Combines Statistics and Software

Different parts of the ML pipeline lifecycle should sound familiar.

To a data scientist: To a software engineer:

As a result, it is natural that best practices from both data science and
software development apply. And they apply at the same time, along
with the best practices that domain experts bring with them in
contributing to the design and implementation of the ML pipeline.

Project Scoping

The first step in building a machine learning pipeline is to understand
what it is supposed to do. We should:
• Identify the problemwe want to solve: a concrete business or
academic need which is worth addressing for enough people.

• Identify the targets we want to optimise for: measurable domain
metrics with achievable threshold values that define “success”.

• Identify what data we need: all the data sources we want to use,
who owns them, and how to access them. Choose them following
the best practices from survey sampling and experimental design!

• Perform a preliminary analysis:
• howmuch data we can collect, what variable types they will contain;
• models based on their sample size requirements, their assumptions
and the inference types they support (prediction, classification, etc.)

Once we know all this, we can build a minimum viable pipeline.

The Preliminary Analysis

More in detail:
• Robustness: against the noise in the data, model misspecification
and adversarial attacks.

• Interpretability and explainability: how well we can understand the
behaviour and the outputs of the models either directly or through
auxiliary models to provide post hoc explanations.

• Fairness: we should not discriminate against individuals or groups
based on sensitive attributes such as gender, race or age. Models
can easily incorporate the biases present in the training data.

• Privacy and security: Machine learning models should protect
privacy by not disclosing personally identifiable information.

In addition to:
• Hardware requirements: howmuch (and what types of) compute,
howmuch storage and howwe should connect them.

• Software requirements: what MLOps platforms, what programming
languages, what libraries, etc.

The Pipeline as a Directed Acyclic Graph (DAG)

The DAGmaps the paths of execution of the pipeline and the flow of data
and information. For complex pipelines, we can split it into smaller DAGs.

Baseline implementation

Sketching a baseline implementation from the DAG is key to validating all
the steps of the pipeline and evaluating different approaches. The
starting point of producing the real thing by:

• Starting to use experiment tracking: version control all the code, the
data and the models to enable continuous integration.

• Constructing a suite of software tests: the starting point to transform
the proof of concept into production-quality code by gradually
refactoring and documenting it with the help of code review.

• Improving scalability: A proof of concept is typically built using a
small fraction of the available data, so wemust ensure that its
computational complexity is small enough to make learning and
inference feasible in production when all data are used.

The Anatomy of an ML Pipeline, in Pictures

It’s an team effort by Software Developers, Data Scientists, Machine
Learning Engineers and Domain Experts!

Data Ingestion

The first part of the pipeline will comprise one or more data ingestion
modules which collect data from various sources: relational databases,
legacy OLTP/OLAP systems andmodern in-house or cloud data lakes.

After collecting/downloading the raw data, we do ETL:
1. Extract the relevant data from the source.
2. Transform the data to allow for further processing.
3. Load the data into a centralised repository.

Issues:
• Tracking data provenance and complying with HIPAA/GDPR/etc.
• Monitoring data sources for availability and data drift.
• Reconciling overlapping data sources.

Data Ingestion: In Our Use Case

The source data are full resolutions images of 2448 by 2050 pixels in 8-bit
grayscale taken by an industrial camera, triggered by the PLC.

Each of them is:

1. Stored in the internal flash memory of the camera.

2. Copied via HMI-Panel script to a network share on a local storage.

3. Processed by a long-running task (a Python process) for image
preparation and optimization.

4. Copied the original and processed versions on remote object
storage (S3) for archiving.

In Our Use Case: Raw Images

An example of a raw image of 2448 by 2050 pixels in 8-bit grayscale.

Data Preparation

Improving the quality of the ingested data in an automatic and
reproducible waymakes later stages of the pipelinemore reliable. We do:
• Validate the types, the acceptable values and the statistical
distribution of each feature.

• Perform feature selection and feature engineering.
• Split the data into training, validation and test sets for later use.

Issues:
• Labelling data is hard.
• Separating true causal features from epsilon features andmarginal
features is hard.

• Data will change over time, so setting fixed thresholds is hard.

In Our Use Case: Image Optimisation

The raw images are processed through several steps to optimize them for
effective labelling and training.

Preprocessing:
• Resizing to 306 x 256 pixels.

Augmentations:
• Horizontal shifting.
• Brightness adjustment.
• Rotation.
• Zoom.

Before

After

In Our Use Case: Labelling

Images must be labelled, and the coordinates of the bounding box
exported in YOLO format:

class_id x_center y_center width height

Label metadata:
• class_id: 0 (Plug)
• x_center: 0.5031
• y_center: 0.5587
• width: 0.4418
• height: 0.2691

We can use open-source tools such as CVAT or Label Studio for labelling.

In Our Use Case: Sample Creation and Versioning

The 2075 images are split into 80% training (1660), and 20% validation
(415), organised following the YOLO directory structure.

└── plugs
├── train

├── images
├── 00232545-2974-4180-a1f3-79764ab1daca_1.png
├── 0028912f-781f-4c0a-a002-d021e7d42eb2_1.png
[...]

├── labels
├── 00232545-2974-4180-a1f3-79764ab1daca_1.txt
├── 0028912f-781f-4c0a-a002-d021e7d42eb2_1.txt
[...]

└── val
├── images

├── 001cb842-c6ad-4ea3-96cc-76ec2609b87c_1.png
├── 005b5920-b556-44b1-8305-fc47d9b1d492_1.png
[...]

├── labels
├── 001cb842-c6ad-4ea3-96cc-76ec2609b87c_1.txt
├── 005b5920-b556-44b1-8305-fc47d9b1d492_1.txt
[...]

Model Training and Evaluation

The pipeline schedules training workloads on compute systems with the
appropriate hardware andmonitors their progress. It should also:

• simplify the parallel training of models with predefined, regular
patterns of hyperparameters;

• automate software tests implementing property-based testing of
the model’s probabilistic properties;

• support the fine-tuning of pre-trainedmodels;

• version models and perform experiment tracking.

We evaluate whether a newly trainedmodel is better in statistical terms
than the model we are currently using in terms of predictive accuracy.

In Our Use Case: Training with a Declarative Approach

Training requires a systematic approach to its configuration and logging:
• Parameters and hyperparameters are managed through a
declarative approach with YAML files (params.yaml).

• The overall training process is monitored and logged using
experiment tracking tools such as Weights & Biases or MLFlow.

pretrained:
model: "yolov8n.pt"

train:
data: "data/plugs/dataset.yaml"
epochs: 100
seed: 42
batch: 32
workers: 4
best_model: "runs/detect/train/weights/best.pt"
model_path: "models/best_model.pt"

In Our Use Case: Monitoring Metrics during Training

During the training, we use experiment tracking to monitor:
• Loss functions: box loss, distribution focal loss (DFL), class loss.
• Systemmetrics: especially GPU utilisation metrics (RAM).

In Our Use Case: Collecting Performance Metrics

We evaluate the model on the validation data set to assess its
performance metrics:
• mAP50: Mean Average Precision at an IoU threshold of 0.50.
• mAP50-95: Average of Mean Average Precision at IoU thresholds
from 0.50 to 0.95.

Model Validation

We also check whether the newmodel is preferable to the current one in
domain terms to validate it using the metrics from the scoping phase.

Model evaluation andmodel validation agree if we choose well-matched
domain metrics and statistical accuracy measures. Models with poor
statistical properties will typically not encode the domain well enough
for practical use, but models with good statistical properties are not
necessarily useful either.

Model evaluation can be automated to a certain extent. Model validation
requires a domain expert.

In Our Use Case: Model Validation

Model validation combines two approaches:
• visual inspection of the model predictions by overlaying the
predicted bounding box vs the ground-truth bounding box; and

• automatic validation of howmuch the predicted bounding box
matches the actual box (Intersection over Union, “IoU”).

The IoU between the red box and the green ground truth box is 0.82.

In Our Use Case: Continuous Validation and Retraining

Evaluating model metrics in production is essential:
• The industrial environment can change due to physical
modifications to the production environment.

• Changes can also occur because of technological updates, such as
improvements in hardware.

• Therefore, the production images have a different distribution than
those on which the model was originally trained and tested.

Plug barely visible on the right. Lots of smoke clouding the plug.

Monitoring

Monitoring collects the metrics to track whether the pipeline and the
individual modules achieve the required statistical and domain
performance levels at all times and to allow us to pinpoint the source of
any issue wemay have to troubleshoot.

Logging

Logging complements monitoring by recording relevant information
about events that occur inside individual modules (or the pipeline
orchestration) in a sequence of timestamped log messages. This
improves our ability to debug and troubleshoot issues on remote
systems we cannot access directly.

Reporting

Reporting implements graphical interfaces that display monitoring and
logging information with intuitive, interactive dashboards. For instance:

• Data ingestion and preparation: plots of the empirical distribution
features and key summaries fromminimal statistical models.

• Training: plots of model performance and behaviour
(explainability), interactive dashboards with sliders to pick
hyperparameters on the fly.

• Serving and inference: time series plots to detect data drift and loss
of accuracy.

All plots should also include confidence intervals!

Reporting: Demo Dashboard

A well-designed dashboard is essential for:
• Interactive visualization and demonstration;
• Feedback and testing.

(link)

http://localhost:8080

Check Course Overview

Check Industrial Seamless Pipe Piercing: Plug Detection
and Localisation with Computer Vision

Check Machine Learning Pipeline: What Is It?
Project Scoping and Baseline Implementation
Data Ingestion and Preparation
Model Training and Evaluation
Monitoring, Logging and Reporting

ARROW-RIGHT Assorted Trade-Offs and Best Practices

Hardware

Storage
RAM Network

Remote Storage

Remote Compute

Global Memory

Local
Memory

Unit

Local
Memory

Local
Memory

Local
Memory

Unit Unit Unit

GPU

CPU

TPU
(more than one in each board)

Lo
ca

l M
em

or
yMatrix

Multiplication
Unit

Unit

CPU
Cache I/O

Registers

Units

Hardware

• Eachmodel and task is better suited to particular types of hardware.

• Operational intensity: we want to keep all those processors busy as
much as possible by doing things in parallel (at the instruction, data
and thread level).

• Local vs remote:
• Colocating the data and all the compute systems that will work on it to
avoid large, repeated data transfers across different locations.

• It is desirable to keep geographical spread for disaster recovery.

• Cloud computing is not a universal solution to capacity planning:
• It may be cheaper to buy the hardware outright if we use it a lot.
• Good at horizontal scalability but struggles with vertical scalability.
• Cloud instances are more difficult to profile and trace.

Programming and Code Styles

• Variable types: consider size and hardware support.

• Data structures: consider memory efficiency, what ML libraries use,
and the ML algorithms access patterns.

• Algorithms: consider their complexity and how they should scale,
keeping in mind that hardware and data structures canmatter as
much as big-𝑂 notation.

• Programming language(s): consider observability and library
availability.

• Coding styles and standards: consider readability and prevent code
smells, including those specific to machine learning!

• Filesystem structure: follow a standard one that cleanly separates
different modules, is easy to navigate and to version.

Refactoring

We can refactor modular code and evolve it piece-wise...

... but we have to refactor the MLmodels across modules to keep their
mathematical and probabilistic properties consistent across the pipeline.

How To Package

• Hardware abstraction.
• Horizontal and vertical
scalability.

• Portability.

• Smaller, start faster.
• Better orchestration.
• Better MLOps integration.

For models: we can either embed them in the software or ship them as
standalone (say, ONNX) packages from amodel registry.

In Our Use Case: How To Package

To guarantee maximum portability over time:

• We export the model in ONNX and PyTorch format. ONNX facilitates
framework interoperability, serving as an intermediary format for
deploying trainedmodels across diverse ML platforms.

• Wewrap up the model and all software dependencies and we store
them in a container environment for consistency and
reproducibility.

• We store both the model and its dependencies in version control,
ensuring traceability and facilitating rollback to previous versions if
needed.

• Additional automated testing procedures can be established to
validate the model’s performance, integrating automatic metric
validation within the CI/CD pipeline before container creation.

How To Deploy and Serve

Consider availability, throughput and latency requirements,
and remember to allow for rollbacks!

In Our Use Case: How To Deploy and Serve

• Container deployment is feasible on public cloud and container
orchestration platforms like Kubernetes.

• The inference endpoint is accessible through a RESTful API to
ensure interoperability and flexibility.

OpenAPI specs

That's all!

Happy to discuss in more detail.

	Course Overview
	Industrial Seamless Pipe Piercing: Plug Detection and Localisation with Computer Vision
	Machine Learning Pipeline: What Is It?
	Project Scoping and Baseline Implementation
	Data Ingestion and Preparation
	Model Training and Evaluation
	Monitoring, Logging and Reporting

	Assorted Trade-Offs and Best Practices

