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Bayesian Networks

Bayesian networks (BNs) [6, 13] are defined by:

e a network structure, a directed acyclic graph G = (V, A), in which
each node v; € V corresponds to a random variable X;;

e a global probability distribution, X, which can be factorised into
smaller local probability distributions according to the arcs a;; € A
present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

p
P(X)=][[P(Xi|Ix,) where Iy, = {parents of X}
=1
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Discrete Bayesian Networks

In discrete BNs all X; are defined to be either categorical or ordinal
variables, and the parameters of interest are grouped in conditional
probability tables (CPTs).

RO
Ux,) | 71 -+ mp |1
Uy, | T2 0 Thp |1

If the variables are ordinal, X; and X are considered dependent if there
is a trend, e.g. the levels of the first increase (decrease) as the levels of
the second increase (decrease).

Marco Scutari University of Oxford



An Example: The ASIA Network (Global Distribution)

tuberculosis?

either tuberculosis
or lung cancer?
dyspnoea?
positive X-ray?

Lauritzen SL and Spiegelhalter DJ (1988). [7]
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An Example: The ASIA Network (Local Distributions)
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Continuous (Gaussian) Bayesian Networks

In continuous BNs the global distribution is assumed to be multivariate
normal and the local distributions are univariate normals with
independent variances. If we further assume that all dependencies are
linear, the BN describes a hierarchical linear regression model with

Xi=u+Xj1ﬂ1+...+Xjk,8k+€i with e’;‘z‘NN(O,O'l-Z).

As an extension of the above, hybrid BNs also include discrete variables
which make the BN behave as a mixture or a random effects model.
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An Example: The Marks Network

Mardia KV, Kent JT and Bibby JM (1979) [10] and Whittaker J (1990). [16]
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An Example: The Marks Network (Local Distributions)

ALG = 50.60 + eaLc ~ N(0,10.62?)

ANL = —3.57 + 0.99ALG + eanL ~ N(0,10.50%)
MECH = —12.36 + 0.54ALG + 0.46VECT + emecH ~ N(0,13.97%)
STAT = —11.19 + 0.76ALG + 0.31ANL + estaT ~ N(0,12.60°)

VECT = 12.41 + 0.75ALG + evect ~ N(0,10.48?)
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Causal Interpretation of Bayesian Networks

It seems that if conditional independence judgments are byproducts
of stored causal relationships, then tapping and representing those
relationships directly would be a more natural and more reliable way
of expressing what we know or believe about the world. This is
indeed the philosophy behind causal BNs.

Judea Pearl [14]

This is the reason why building a BN from expert knowledge in practice
codifies known and expected causal relationships for a given phenomenon.
Three additional assumptions are needed:

e each variable X; € X is conditionally independent of its non-effects, both
direct and indirect, given its direct causes;

e there must exist a DAG faithful to the probability distribution P of X;

e there must be no latent variables (unobserved variables influencing the
variables in the network) acting as confounding factors.
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Obligatory XKCD

T USED T THINK, THEN I TOOk A | | SOUNDS LKE THE
CORRELATION IMPUED | | STATISTICS CLASS. CLAss HELPED.
Now I DON'T. WELL, NHYBE.

7% 159089

http://xkcd.com/552/
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Bayesian Networks and Experimental Design

The link between BNs and survey data analysis is that, as the latter,
they can be applied to
1. observational data, letting model estimation learn all the
dependencies between the variables. For this to make sense we
implicitly assume our sample is representative of the population;

2. experimental data, whose dependence structure is set (at least in
part) by the design;
In addition, BNs make it easy to combine either type of data with
interventional data (e.g. data with variables whose values are actively
set by the experimenter) to disambiguate the directions of causality.

Variables that are under the control of the experimenter, because of
either interventions or randomisation, cannot have incoming arcs in the
BN because they are not (supposed to be) subject to external influences.
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Addressing Confounding

A confounder is defined as an extraneous variable that is associated with
both the variable of interest and the variables used to explain it. If such
a variable is included in the BN:

e we can condition or marginalise it to remove its influence from the
inference on the rest of the model;

e we can treat it an intervention and perform a counterfactual query
[14], the causal equivalent of the conditional probability query
above.

If such a variable is not in the BN:

e if the structure is considered fixed, at least in the neighbourhood of
the confounder, a standard application of the EM algorithm [9] can
be used to impute the parameters;

o if the structure is also unknown, the structural EM [2] can be used
to learn iteratively the parameter given the structure (E step) and
the structure given the parameters (M step).
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Confounding and Latent Variables: An Example

Edwards [1] noted that the students whose marks were recorded
apparently belonged to two groups (which we will call A and B) with
substantially different academic profiles. He then assigned each student
to one of those two groups using the EM algorithm to impute group
membership as a latent variable (LAT). The EM algorithm assigned the
first 52 students (with the exception of number 45) to belong to group
A, and the remainder to group B.

The BNs learned from group A and group B are completely different.
And they are both different from the BN learned from the whole data
set, with and without LAT.
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The Marks Network, Once More
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An Example: Train Use Survey

Consider a simple, hypothetical survey whose aim is to investigate the usage
patterns of different means of transport, with a focus on cars and trains
(disclaimer: liberally inspired by [5]).

Age (A): young for individuals below 30 years old, adult for individuals
between 30 and 60 years old, and old for people older than 60.

Sex (S): male or female.
Education (E): up to high school or university degree.
Occupation (0): employee or self-employed.

Residence (R): the size of the city the individual lives in, recorded as
either small or big.

Travel (T): the means of transport favoured by the individual, recorded
either as car, train or other.

The nature of the variables recorded in the survey suggests how they may be
related with each other.
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That is a prognostic view of the survey as a BN:

1. the blocks in the experimental design on top
(e.g. stuff from the registry office);

2. the variables of interest in the middle (e.g.
socio-economic indicators);

3. the object of the survey at the bottom (e.g.
means of transport).

Variables that can be thought as “causes” are on
above variables that can be considered their “ef-
fect”, and confounders are on above everything
else.
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The Train Use Survey as a Bayesian Network (v2)

That is a diagnostic view of the survey as a BN: it
encodes the same dependence relationships as the
prognostic view but is laid out to have “effects”
on top and “causes” at the bottom.

Depending on the phenomenon and the goals of
the survey, one may have a graph that makes more
sense than the other; but they are equivalent for
any subsequent inference. For discrete BNs, one
representation may have fewer parameters than
the other.
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Conditional Probability Queries

In a conditional probability query:
1. we condition on the distribution of one or
more variables, but
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2. the probabilistic dependencies are left intact.

This is because we are investigating the phe-
nomenon as it was observed from the data, and
therefore we let the conditioning propagate to all
other variables. So the distribution of i.e. A is
updated to A | E in the same way as 0 is updated
to 0 | E.
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Counterfactual Queries
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In a counterfactual query:

1. we take complete control of the distribution
of one or more variables, and

2. the probabilistic dependencies of those

nodes (e.g. incoming arcs) are removed
from the BN.

This is because we are considering an alternate
scenario than that it was observed from the
data, and we let the conditioning propagate only
to variables downstream (the “effects”, not the
“causes”). So the distribution of i.e. A remains
unaffected but 0 is updated to 0 | E.
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Dynamic Bayesian Networks

Dynamic BNs [11] are the temporal extension

@ of classic BNs, which are sometimes referred to
as static BNs.

/ e They are implicitly assumed to represent a

Markov chain of order 1 — not because it

is impossible to model higher-order
dependencies but because we usually do
not have data good/large enough to do
that.

@ e All dependencies are assumed to flow
/ along the arrow of time, and dependencies
between variables at the same time point
@ are generally not allowed.

e We can model feedback loops!
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Unrolling and Static Bayesian Networks
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All dynamic BNs can be unrolled into static BNs by duplicating nodes
as required by the Markov order. Thus, there is not practical difference
as far as subsequent inference is concerned.
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Bayesian Networks and Panel Data

Dynamic BNs thus allow to model panel data along the same lines as normal
surveys. The main differences are:

e Model estimation is much easier, because all arc directions follow the
arrow of time as per the Granger causality principle [3]. No equivalence
classes of BNs that are probabilistically indistinguishable.

e Model estimation is not as straightforward, because dynamic BNs have
more parameters and thus require large sample sizes [4], regularisations
based on strong sparsity-inducing priors [12], or other simplifying
assumptions [8].

e Non-stationarity is also an issue [15], especially for discrete BNs.

Vector Auto-Regressive (VAR) processes are trivially rewritten as continuous
dynamic BNs, and the same is true of discrete time Markov processes (discrete
BNs), longitudinal and mixed effects models (hybrid BNs). So most models
used for panel data can be expressed as BNs, which allows for standardised
inference and causal inference.
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Conclusions

e BNs allow an intuitive representation of dependencies for use in
exploratory analysis, qualitative reasoning on the data, and to guide
further modelling and inference.

e BNs provide a standardised formal treatment of causality for both
static and dynamic data.

e Model estimation is largely abstracted from the nature of the data,
both in the types of variables and in the sampling scheme.

e Models for both survey and panel data can be rewritten as (static or

dynamic) BNS; that is, BNs subsume and generalise a number of
classic models.
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