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MACHINE LEARNING: IT SHOuLD BE CAUSAL!

Machine learning is changing science and the society we live in thanks to
our ability to learn models that can capture information effectively.
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‘They bring enormous promise and peril. In the first of three special articles we explain how they work

natre
computational
science

It creates black boxes that use probabilistic associations for prediction.
It is not equipped to understand the causality that drives reality.

Scientific questions are inherently causal. Causation is central to how we
think as human beings and how we understand the world.




CAUSALITY IS A NETWORK

Judea Pearl [3] has worked out a

rigorous theory of causality that uses
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CAUSALITY AND STATISTICAL LEARNING

Research on causality is limited because
1. it concentrates on inference,

2. models are given or learned from toy data sets.
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We must be able to learn causal networks to get to do inference!
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CausAL NETWORKS MEET DATA

Learning a causal network means

P(G,0| D) = P(G| D) . P©1G,D),
N — e’ N — N — e’
learning structure learning parameter learning

with its structure G
P(G|D)xP(GP(D|3) = P(9)/P(D | 5,0)P(©]9)do
and its parameters ©
PO1]G4,D)=PO|95)P(D|G,0).

We used to ask domain experts for information [2, 1]; now we rely
increasingly on the data 2.



CAausAL NETWORKS MEET COMPLEX DATA

What assumptions do we make on the data?
o Observations are independent and there are no missing values;

« We observe all variables, that is, no latent variables introducing

confounding into the model.

They are too restrictive!
The actual data.

size

What we assume.



DISTRIBUTIONS FOR COMPLEX DATA

Complete independence D~ N(p,Xx ®I)
Temporal dependence D~N(p,Xx ®3,)
Spatial dependence D~NpExX,)
Spatio-temporal dependence D~NpIx3, %)

And we are not even considering interactions between space and time
parameters, much less missing values and latent confounders.

Q1 Can we afford it? (Hint: no.)

Q2 Do we need it? (Hint: not necessarily.)



NUISANCE PARAMETERS, PARAMETERS OF INTEREST

A causal network has two components: the graph G and the parameters
0. Causal inference defines queries using G:

« Conditional independence, via d-separation.
« Intervention, via mutilation.
» Counterfactual, via the twin network.

Our ability to answer scientific questions using the causal network rests
on having the right nodes in the network. If we don’t, we cannot even
formulate our question.

« The dimensions we use in the queries (interest) should be
represented as nodes.

« The dimensions we do not (nuisance) should be represented as
parameters in the local distributions.



THE LOoCAL DISTRIBUTIONS IN A CAUSAL NETWORKS

A causal network defines the local distributions

p
HP(XZ- | x,;0x,) where Iy = {parentsofX;}.
=1

P(X)

where| Jy O = ©.If X; and [Ty , we commonly assume

X; = px, +x,Bx, +€x, ex, ~ N(0,0% I).

Itis quite all right to embed space, time or bothine . as
ex, ~N(0,0%3I®%, ®%,)

instead of keeping s x t location-time combinations as separate nodes.



TIME AND SPACE AS NODES, NO NUISANCE PARAMETERS
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TIME AND SPACE AS NODES, NO NUISANCE PARAMETERS

PROS:

« We can formulate queries across time points.

« We can formulate queries across locations.

« We can capture any state-space dependence structure across data.
» Local distributions are straightforward since e x, ~ N (0, Ugﬂ-l)'

CONS:

« Sample size requirements are impractical.
« Visual inspection isimpossible.
« Causal inference has exponential computational complexity.

» Not all arcs have a causal interpretation?



SPACE AS NODES, TIME AS A NUISANCE PARAMETER
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SPACE AS NODES, TIME AS A NUISANCE PARAMETER

PROS:
« We can formulate queries across locations.
» We can capture any dependence structure across space.

« Local distributions are straightforward sincee x. ~ N (0, ag(iI ®%,)
where X, can be the AR(1) correlation matrix.

« We can use thinning!
CONS:
» We cannot formulate queries across time points.
« Sample size requirements are still difficult to meet.
« Visualinspection is next to impossible.

Causal inference has exponential computational complexity.

« We can use Granger causality to allow for causal interpretation.



SPACE AS NODES: AN EXAMPLE
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M. Scutari and C. E. Graafland and J. M. Gutiérrez (2019). [4]




TIME AS NODES, SPACE AS A NUISANCE PARAMETER
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TIME AS NODES, SPACE AS A NUISANCE PARAMETER

PROS:

« We can formulate queries across time points.

« We can capture any dependence structure across time:
autocorrelation, seasonality, drift, etc.

o Sample size requirements are easier to meet.
« Visual inspection and inference are straightforward.

CONS:

« We cannot formulate queries across locations.

« Local distributions are quite complicated: e x. ~ N(0,0% I® X,)
and it is much more difficult to parameterise X, than 3.



TIME AS NODES: AN EXAMPLE

M. Scutari and D. Kerob and S. Salah (2024). [5]



BoTH TIME AND SPACE AS NUISANCE PARAMETERS

PROS:

« Sample size requirements are easy to meet since we aggregate data
across both time and space.

« Visual inspection and inference are straightforward.

CONS:
« We cannot formulate any query across time points or locations.
« We cannot model any kind of feedback loop.

» Local distributions are extremely complicated:
ex, ~N(0,03I®%, ®X,).



TIME AND SPACE AS NUISANCE PARAMETERS: AN EXAMPLE

C. Vitolo, M. Scutari, M. Ghalaieny, A. Tucker and A. Russell (2018). [6]



FEW CONCLUSIONS, MANY OPEN QUESTIONS

Al Which approach we can afford to use depends on how many variables,
locations and time points we have and on how regular their pattern is.

A2 Which approach we need depends entirely on which questions we
want to answer with causal inference.

Q3 Computational complexity trade-offs?
Q4 Software availability?
Q5 Prior distributions to keep statistical learning on the reasonable side?

Q6 Implications on causal inference?
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THAT'S ALL!

HAPPY TO DISCUSS IN MORE DETAIL.
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