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A Graph and a Probability Distribution

A Bayesian network (BN) [20] is defined by:

• a network structure, a directed acyclic graph 𝒢 in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution X with parameters Θ, which can be
factorised into smaller local probability distributions according to
the arcs present in 𝒢.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖 in 𝒢} .



Bayesian Network Structure Learning

Learning a BN ℬ = (𝒢, Θ) from a data set 𝒟 involves two steps:

P(ℬ ∣ 𝒟) = P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

Structure learning consists in finding the DAG with the best

P(𝒢 ∣ 𝒟) ∝ P(𝒢)⏟
graph prior

⋅ P(𝒟 ∣ 𝒢)⏟⏟⏟⏟⏟
marginal likelihood

= P(𝒢) ∫ P(𝒟 ∣ 𝒢, Θ) P(Θ ∣ 𝒢) 𝑑Θ

which is known as score-based learning [10]. The alternative, constraint-
based learning, uses tests following Pearl’s work on causality [24]:

𝑋𝑖 ⟂⟂𝑃 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
conditional independence

⟹ 𝑋𝑖 ⟂⟂𝐺 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
graphical separation

.

Parameter learning consists in estimating the parameter sets Θ𝑋𝑖
∣ Π𝑋𝑖

.



The Classic Definition and Modern Extensions

What are we assuming when trying to learn a BN? Typically that:
• observations are independent and there are nomissing values;
• all variables are observed, that is, there are no latent variables
introducing confounding in the model;

• wemeasure probabilistic associations (or rather, independencies)
and we cannot necessarily interpret them as causal.

What happens if we relax these assumptions? Many extensions suddenly
become possible, see [19] for a recent review. In this talk we will discuss:
• Learning BNs from continuous-time dynamic data [5].
• Learning BNs from data in which data have structure, such as
state-space data and collations of related data sets [2, 21].

We will not discuss learning BNs from incomplete data, but we are
making progress on that front as well [4].
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Continuous-Time Bayesian Networks

Continuous-Time BNs (CTBNs) are a framework for modelling
finite-state, continuous-time processes. Their graphical representation
allows for natural, cyclic dependency graphs without having to specify a
temporal granularity [17].

A CTBN consists of two components:
• A directed graph encoding conditional
independencies.

• A conditional intensity matrix (CIM) Q𝑋𝑖 ∣ u
describing the evolution process of a
variable with the parameters
• q𝑋𝑖

: a set of intensities parameterising the
exponential distributions over when the next
transition occurs.

• 𝜽𝑋𝑖
: a set of probabilities parameterising the

distribution over where the state transitions.

X1

X2 X4

X3



Constraint-Based Structure Learning?

Score-based learning was covered by Nodelman [17] in his original work
on CTBNs. For constraint-based structure learning, we need a new
definition of conditional independence [5]:

Let𝒩 be a CTBNwith a graph𝒢 overX. We say that𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗
if Q𝑋𝑖 ∣ 𝑥,s = Q𝑋𝑖 ∣ s for all values 𝑥, 𝑠 of 𝑋𝑗 and S𝑋𝑖,𝑋𝑗

.

Note that conditional independence is not symmetric in CTBNs! To test it
we need to test two separate hypotheses:
• Time To Transition: independence of the waiting times (q𝑋𝑖

), tested
with an 𝐹 test to compare their exponential distributions.

• State-to-State Transition: independence of the transitions (𝜽𝑋𝑖
),

tested with a two-sample 𝜒2 test or a Kolmogorov-Smirnov test.
We test time-to-transition hypothesis first and then, if the null is rejected,
the state-to-state hypotheses. If both nulls are rejected, 𝑋𝑖 and 𝑋𝑗 are
conditionally independent.



Hypothesis Testing

Time to Transition [3]: given the exponential waiting times 𝑞𝑥∣s, 𝑞𝑥∣𝑦,s,

𝐻0 ∶
𝑞𝑥∣s

𝑞𝑥∣𝑦,s
= 1 with null 𝐹𝑟𝑎,𝑟𝑏

where 𝑟𝑎 = ∑𝑥′∈𝑋𝑖
𝑀𝑥𝑥′∣𝑦,s and 𝑟𝑏 = ∑𝑥′∈𝑋𝑖

𝑀𝑥𝑥′∣s.

State-to-State Transition [15]: given 𝜃𝑥∣s, 𝜃𝑥∣𝑦,s,

𝐻0 ∶ 𝜃𝑥∣s = 𝜃𝑥∣𝑦,s with null 𝜒2 = ∑
𝑥′∈𝑋𝑖

(𝐾 ⋅ 𝑀𝑥𝑥′∣𝑦,s − 𝐿 ⋅ 𝑀𝑥𝑥′∣s)2

𝑀𝑥𝑥′∣s + 𝑀𝑥𝑥′∣𝑦,s

where 𝐾 = √ ∑𝑘
𝑖=1 𝑀𝑥𝑥′∣s

∑𝑘
𝑖=1 𝑀𝑥𝑥′∣𝑦,s

and 𝐿 = 1
𝐾 .

We reject the (conditional) independence between the two nodes if at
least one null hypothesis is rejected.



A PC Algorithm for Continuous-Time Bayesian Networks

Given how different the definition of conditional independence is, we
need to adapt the PC algorithm [6] to match.

1. Form a complete directed graph 𝒢 over X.
2. For each variable 𝑋𝑖:
2.1 Set U = {𝑋𝑗 ∈ X ∶ 𝑋𝑗 → 𝑋𝑖}, the current parent set.
2.2 For increasing values 𝑏 = 0, … , |U|:
2.2.1 For each 𝑋𝑗 ∈ U, test 𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗

for all possible subsets of size 𝑏
of U ⧵ 𝑋𝑗.

2.2.2 As soon as 𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ S𝑋𝑖,𝑋𝑗
for some S𝑋𝑖,𝑋𝑗

, remove 𝑋𝑗 → 𝑋𝑖 from 𝒢
and 𝑋𝑗 from U.

3. Return 𝒢.

We call this the Continuous-Time PC (CTPC) algorithm [5]. It has better
structural accuracy than the score-based approach in [17], but both
approaches are slow: they are only practical for less than 20 variables.



CTPC Versus Score-Based Learning
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Social Networks and Graphical Models

Network models broadly fall into two groups:
• Social networks in which nodes are associated with individuals and
arcs represents their similarity, measured on the variables.

• Graphical models in which nodes are associated with the variables
in the data and the arcs represent probabilistic associations
measured on independent observations.
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Bayesian Networks for Structured Data

We often want to model both perspectives at the same time:
• In causal networks to measure the average treatment effect from
multi-centre clinical trials, individuals treated in the same hospital
and the treatment they receive are more homogeneous than those
in different hospitals.

• In gene networks andmultivariate genomic association models,
similarity between the genotypes of individuals implies a similarity
in their phenotypical traits.

• In state-space data, individuals close to each other in space aremore
likely to exhibit similar behaviour; and longitudinal measurements
are more strongly associated within than between individuals.

Failure to properly account for the similarity between individuals
artificially inflates the strength of the apparent relationships between
the variables, resulting in dense biased networks.



Multi-Centre Clinical Trials: Related Data Sets

Hospitals produce separate data sets which are then collated together for
the analysis. Inevitable differences in their implementations of the
clinical trial make those data sets related but not identical.
We want to learn the BN as a hierarchical model that separates the
shared average effect encoded by each arc from hospital-specific effects,
pooling information across hospitals.

Assumptions: the structure of the BN is
the same for all hospitals, but the
parameters differ between hospitals.
The assignment of each individual to
hospital is known.

The mathematical formulation:
• a variational Bayesian score with a
hierarchical prior [2];

• using mixed-effects models [21].

TREATMENT
(RANDOMISED)

RECOVERY

DISEASE

PATIENT

HOSPITAL



A Variational Bayesian Score for Discrete Variables

Cat.Dir.Dir.

Cat.Dir.Dir.

Hierarchical
Model

Variational
Approximation

Thus we get the Bayesian Hierarchical Dirichlet (BHD) score:

P(𝒟 ∣ 𝐹 , 𝒢) ≈
𝑁

∏
𝑖=1

|𝐹|

∏
𝑓=1

|Π𝑋𝑖|

∏
𝑗=1

[
Γ(𝑠𝑖 ̂𝜅𝑖𝑗)

Γ(𝑠𝑖 ̂𝜅𝑖𝑗 + 𝑛𝑓
𝑖𝑗)

|𝑋𝑖|

∏
𝑘=1

Γ(𝑠𝑖 ̂𝜅𝑖𝑗𝑘 + 𝑛𝑓
𝑖𝑗𝑘)

Γ(𝑠𝑖 ̂𝜅𝑖𝑗𝑘)
]

where 𝑠𝑖 ̂𝜅𝑖𝑗𝑘 = the posteriormean of𝛼𝑖𝑗𝑘 under the variationalmodel.



Variational Approximations and Mixed-Effects Models

The BHD score:
• has better structural accuracy when we are modelling related data
sets;

• it gets increasingly better as the number of related grows;
• it gets increasingly better as the size of (at least some of) the
individual related data sets grows.

However, this approach is not flexible because we need a separate set of
mathematical derivations for each structured-data scenario and for each
type of random variable. In this respect, a better alternative is to use
mixed-effects models (LMEs) [7, 18] as the local distributions for the 𝑋𝑖:
• generalised linear mixed-effects models (GLMMs) canmodel all
types of variables in the exponential family (binomial, multinomial,
Poisson, Gaussian, etc.) but

• in practice they make us reintroduce some linearity assumptions.



What Does That Look Like?

In a Gaussian BN, each node 𝑋𝑖 has distribution

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ 𝜀𝑋𝑖

with 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑋𝑖
I𝑛). (1)

Adding a grouping node 𝐹 like clinical trial centres would make it a
conditional Gaussian BN in which we fit a separate linear regression for
each data set 𝑗 identified by 𝐹:

𝑋𝑖 = 𝜇𝑖𝑗 + Π𝑋𝑖
𝜷𝑖𝑗 + 𝜀𝑋𝑖

with 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑖𝑗I𝑛𝑗
). (2)

A mixed-effects model that takes (1) and adds random effects for all Π𝑋𝑖

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ Zb𝑋𝑖

+ 𝜀𝑋𝑖
, b𝑋𝑖

∼𝑁(0, Σ), 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑋𝑖
I𝑛)

has the same form as (2),

𝑋𝑖 = (𝜇𝑖𝑗 + 𝑏0𝑗) + Π𝑋𝑖
(𝜷𝑋𝑖

+ b𝑖𝑗) + 𝜀𝑋𝑖
,

but pools information across data sets much like BHD does [21].



Pooling Versus No Pooling: Homogeneous Data
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If the data are just a single homogeneous data set, introducing mixed
effects does not degrade performance.



Pooling Versus No Pooling: Heterogeneous Data
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If the data really are a collation of related data sets, introducing mixed
effects improves both structural (SHD) and parametric accuracy (KL). The
difference becomesmore marked if the related data sets are unbalanced.



Structured Data in Statistical Genetics

Statistical genetics has long used the random effects in mixed-effects
models to encode population structure (that is, related individuals),
using pedigrees or genomic data [1]. In the context of BNs, the
foundational Genomic BLUPmodel becomes

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ g + 𝜀𝑋𝑖

, g ∼ 𝑁(0, K), 𝜀𝑋𝑖
∼𝑁(0, 𝜎2

𝑋𝑖
I𝑛)

where the kinship matrix K encodes the relatedness. If K ∝ GG𝑇, with
G the matrix of the genotypes, this model is equivalent to a ridge
regression, which is in turn equivalent to a random-effects model [9, 23]:

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ Gb𝑋𝑖

+ 𝜀𝑋𝑖
, 𝜀𝑋𝑖

∼𝑁(0, 𝜎2
𝑋𝑖

I𝑛).

Hence we can add the random effects Gb𝑋𝑖
to a local regression as soon

as one of the genotypes is a parent of𝑋𝑖 to implicitly incorporate kinship.

(Or we can give upmodelling individual genotypes and do it like [13].)



Structured Data over Time and Space

Dynamic BNs canmodel temporal data as vector auto-regressive
processes by duplicating nodes across time points [16], spatial networks
over a grid [12]. However, this is impractical when observations are
irregularly spaced and spread over time. A mixed-effects model can
incorporate spatial and temporal autocorrelation into local distributions
using random effects similarly to kinship in statistical genetics models.

A Naive Static BNs
(data are independent across 

time and space)

Nodes Replicated in Time and Space
(too many nodes and arcs)

Dynamic BN with Spatial Correlation
(an interpretable causal network)
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Conclusions and Future Directions

Bayesian networks are a fundamental tool in machine learning: they
subsumemanymodels [19] and handle incomplete data [4],
continuous-time time series [5] and collections of related data sets [2].

What next?

• Making CTBNs into Markov decision processes [11, 22] to model as
streaming health data where we administer medical treatments in
real time.

• Incorporating all the computational tricks used in the statistical
genetics literature [8, 14, 26] to speed up learning.

• A reanalysis of a complex environmental data set such as [25] to
explore BNs with a spatio-temporal structure.
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Thanks!

Any questions?



References I

Tag W. Astle and D. J. Balding.
Population Structure and Cryptic Relatedness in Genetic Association Studies.
Statistical Science, 24(4):451–471, 2009.

Tag L. Azzimonti, G. Corani, and M. Scutari.
A Bayesian Hierarchical Score for Structure Learning from Related Data Sets.
International Journal of Approximate Reasoning, 142:248–265, 2021.

Tag L. Bain and M. Englehardt.
Statistical Analysis of Reliability and Life-Testing Models: Theory and Methods.
CRC Press, 1991.

Tag T. Bodewes and M. Scutari.
Learning Bayesian Networks from Incomplete Data with the Node-Averaged Likelihood.
International Journal of Approximate Reasoning, 138:145–160, 2021.

Tag A. Bregoli, M. Scutari, and F. Stella.
A Constraint-Based Algorithm for the Structural Learning of Continuous-Time Bayesian
Networks.
International Journal of Approximate Reasoning, 138:105–122, 2021.

Tag D. Colombo and M. H. Maathuis.
Order-Independent Constraint-Based Causal Structure Learning.
Journal of Machine Learning Research, 15:3921–3962, 2014.



References II

Tag E. Demidenko.
Mixed Models: Theory and Applications with R.
Wiley, 2nd edition, 2009.

Tag J. H. Sul H. M. Kang, S. K. Service, N. A. Zaitlen, S.-Y. Kong, N. B. Freimer, C. Sabatti, and E. Eskin.
Variance Component Model to Account for Sample Structure in Genome-Wide Association
Studies.
Nature Genetics, 42:348–254, 2010.

Tag D. Habier, R. L. Fernando, and J. C. M. Dekkers.
The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values.
Genetics, 177:2389–2397, 2007.

Tag D. Heckerman and D. Geiger.
Learning Bayesian Networks: a Unification for Discrete and Gaussian Domains.
In UAI, pages 274–284, 1995.

Tag K. F. Kan and C. R. Shelton.
Solving Structured Continuous-Time Markov Decision Processes.
In ISAIM, 2008.

Tag C. Krapu, R. Stuart, and A. Rose.
A Review of Bayesian Networks for Spatial Data.
ACM Transactions on Spatial Algorithms and Systems, pages 1–21, 2022.



References III

Tag W. Kruijer, P. Behrouzi, D. Bustos-Korts, M. X. Rodríguez-Álvarez, S. M. Mahmoudi, B.Yandell,
E. Wit, and F. A. van Eeuwijk.
Reconstruction of Networks with Direct and Indirect Genetic Effects.
Genetics, 214(4):781–807, 2020.

Tag C. Lippert, J. Listgarten, Y. Liu, C. M. Cadie, R. I. Davidson, and D. Heckerman.
FaST Linear Mixed Models for Genome-Wide Association Studies.
Nature Methods, 8(10):833–837, 2011.

Tag B. Mitchell.
A Comparison of Chi-Square and Kolmogorov-Smirnov Tests.
The Royal Geographical Society, 3(4):237–241, 1971.

Tag K. Murphy.
Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, UC Berkeley, Computer Science Division, 2002.

Tag U. D. Nodelman.
Continuous Time Bayesian Networks.
PhD thesis, Stanford University, 2007.

Tag J. C. Pinheiro and D. M. Bates.
Mixed-effects models in S and S-PLUS.
Springer, 2000.



References IV

Tag M. Scutari.
Bayesian Network Models for Incomplete and Dynamic Data.
Statistica Neerlandica, 74(3):397–419, 2020.

Tag M. Scutari and J.-B. Denis.
Bayesian Networks with Examples in R.
Chapman & Hall, 2nd edition, 2021.

Tag M. Scutari, C. Marquis, and L. Azzimonti.
Using Mixed-Effect Models to Learn Bayesian Networks from Related Data Sets.
Proceedings of Machine Learning Research (PGM 2022), 2022.

Tag L. Sturlaugson, L.Perreault, and J. W. Sheppard.
Factored Performance Functions and Decision Making in Continuous Time Bayesian Networks.
Journal of Applied Logic, 22:28–45, 2017.

Tag P.M. VanRaden.
Efficient Methods to Compute Genomic Predictions.
J. Dairy Sci., 91(11):4414–4423, 2008.

Tag T. S. Verma and J. Pearl.
Equivalence and Synthesis of Causal Models.
In UAI, pages 255–268, 1990.



References V

Tag C. Vitolo, M. Scutari, A. Tucker, and A. Russell.
Modelling Air Pollution, Climate and Health Data Using Bayesian Networks: a Case Study of the
English Regions.
Earth and Space Science, 5(4):76–88, 2018.

Tag X. Zhou and M. Stephens.
Genome-Wide Efficient Mixed-Model Analysis for Association Studies.
Nature Genetics, 44:821–824, 2012.


	Bayesian Networks: Definition and Assumptions
	Continuous-Time Bayesian Networks
	Bayesian Networks for Structured Data
	Future Directions

